cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A106519 a(n) = (2/n)*binomial(2*n-2, n-1) - (1/(2*n))*Sum_{d|n} Moebius(d)*binomial(2*n/d, n/d).

Original entry on oeis.org

1, 1, 1, 2, 3, 9, 19, 58, 160, 499, 1527, 4940, 16001, 53187, 178305, 606330, 2079863, 7203864, 25138879, 88367780, 312577245, 1112119079, 3977502767, 14294207172, 51596165898, 186998138529, 680272336906, 2483341820512, 9094756956909
Offset: 1

Views

Author

F. Chapoton, May 30 2005

Keywords

Comments

A simple formula with no known combinatorial interpretation. This should give the multiplicity of the trivial module in some sequence of modules of dimension (2*n-2)!/n! over the symmetric groups S_n induced from modules of dimension (2*n-2)!/n!(n-1)! over the cyclic groups C_n.

Crossrefs

Programs

  • Magma
    A106519:= func< n | 2*Catalan(n-1) - (1/(2*n))*(&+[Round(Gamma(2*n/d +1)/Gamma(n/d +1)^2)*MoebiusMu(d): d in Divisors(n)]) >;
    [A106519(n): n in [1..30]]; // G. C. Greubel, Aug 06 2021
  • Maple
    a:= n -> (2/n)*( binomial(2*n-2, n-1) - (1/4)*add(NumberTheory[Moebius](d)*binomial(2*n/d, n/d), d = Divisors(n)) );
    seq(a(n), n = 1..30); # modified by G. C. Greubel, Aug 06 2021
  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, 2*Binomial[2n-2, n-1]/n - Plus @@ (MoebiusMu[d]*Binomial[2*n/d, n/d])/(2n)]; Table[f[n], {n, 29}] (* Robert G. Wilson v, May 31 2005 *)
  • PARI
    a(n) = (2*binomial(2*n-2, n-1) - sumdiv(n, d, moebius(d)*binomial(2*n/d, n/d))/2)/n; \\ Michel Marcus, Aug 06 2021
    
  • Sage
    def a(n):
        return binomial(2*n-2,n-1)*2//n - sum(moebius(n//d)*binomial(2*d,d) for d in divisors(n))//(2*n) # F. Chapoton, May 31 2020
    

Formula

a(n) = (2/n)*binomial(2*n-2, n-1) - (1/(2*n))*Sum_{d|n} Moebius(d)*binomial(2*n/d, n/d).
a(n) = 2*A000108(n-1) - (1/(2*n))*Sum_{d|n} Moebius(d)*(n/d + 1)*A000108(n/d). - G. C. Greubel, Aug 06 2021
a(prime(n)) = A098796(n). - Peter Bala, Aug 20 2025

Extensions

More terms from Robert G. Wilson v, May 31 2005
a(1) = 1 prepended by G. C. Greubel, Aug 06 2021

A106520 a(n) = A068875(n-1) - A003239(n).

Original entry on oeis.org

1, 0, 0, 0, 2, 4, 18, 48, 156, 472, 1526, 4852, 16000, 52940, 178276, 605520, 2079862, 7201084, 25138878, 88358520, 312576996, 1112087012, 3977502766, 14294093652, 51596165872, 186997738504, 680272334202, 2483340387644, 9094756956908
Offset: 1

Views

Author

F. Chapoton, May 30 2005

Keywords

Comments

This is the multiplicity of the trivial module in a sequence of modules of dimension (2*n-2)!/n! over the symmetric groups S_n, induced from modules of dimension (2*n-2)!/(n!*(n-1)!) (Catalan) over the cyclic groups C_n.

Crossrefs

Programs

  • Magma
    A106520:= func< n | 2*Catalan(n-1) - (1/(2*n))*(&+[Round(Gamma(2*n/d +1)/Gamma(n/d +1)^2)*EulerPhi(d): d in Divisors(n)]) >;
    [A106520(n): n in [1..40]]; // G. C. Greubel, Aug 06 2021
    
  • Maple
    with(numtheory);
    a:= proc(n) (2/n)*binomial(2*n-2, n-1) - (1/(2*n))*add(phi(d)*binomial(2*n/d, n/d), d = divisors(n)) end:
    seq(a(n), n = 1..40);
  • Mathematica
    a[n_]:= 2/n*Binomial[2*n-2, n-1] - 1/(2*n)*DivisorSum[n, EulerPhi[#]* Binomial[2*n/#, n/#]&]; Table[a[n], {n, 40}] (* Jean-François Alcover, Feb 20 2017 *)
  • PARI
    a(n) = (2/n) * binomial(2*n-2, n-1) - 1/(2*n) * sumdiv(n, d, eulerphi(d) * binomial(2*n/d, n/d)); \\ Michel Marcus, Aug 08 2021
  • Sage
    def a(n): return 2*catalan_number(n-1) - (1/(2*n))*sum(euler_phi(n/d)*binomial(2*d, d) for d in divisors(n))
    [a(n) for n in (1..40)] # G. C. Greubel, Aug 06 2021
    

Formula

a(n) = (2/n) * binomial(2*n-2, n-1) - 1/(2*n) * Sum_{d divides n} phi(d) * binomial(2*n/d, n/d).
a(n) = 2*A000108(n-1) - (1/(2*n))*Sum_{d divides n} (n/d + 1)*A000108(n/d) * A000010(d). - G. C. Greubel, Aug 06 2021

Extensions

Terms a(1) to a(4) prepended by G. C. Greubel, Aug 06 2021

A114595 Triangle of the numbers of unique-valued sequences of all lengths (from 1 to 2n-1) consisting of unit matrices (="matrix units") of order n.

Original entry on oeis.org

1, 4, 6, 4, 9, 24, 48, 60, 30, 16, 60, 192, 480, 840, 840, 336, 25, 120, 520, 1920, 5700, 12600, 18480, 15120, 5040, 36, 210, 1140, 5520, 22920, 78120, 206640, 393120, 483840, 332640, 95040
Offset: 1

Views

Author

Aleksandar Blazhevski - Cane (CaneB(AT)MT.Net.Mk), Dec 12 2005

Keywords

Comments

First entry of each row is obviously n^2 and the last entries of each row are the terms of A001761.

Examples

			T(n,1) = a(n^2 - 2n) = n^2.
		

Crossrefs

A156653 Triangle T(n,k) = ((-1)^(n+k)/(n+1))*Sum_{j=0..n} (-1)^j*j!*Stirling2(n, j)* binomial(n-j, k)*binomial(n+j, j), read by rows.

Original entry on oeis.org

1, 1, 3, 1, 16, 13, 1, 125, 171, 39, 1, 1296, 2551, 1091, 101, 1, 16807, 43653, 28838, 5498, 243, 1, 262144, 850809, 780585, 243790, 24270, 561, 1, 4782969, 18689527, 22278189, 10073955, 1733035, 98661, 1263, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 12 2009

Keywords

Comments

Row sums are A001761.

Examples

			Triangle begins as:
          1;
          1;
          3,         1;
         16,        13,         1;
        125,       171,        39,         1;
       1296,      2551,      1091,       101,         1;
      16807,     43653,     28838,      5498,       243,        1;
     262144,    850809,    780585,    243790,     24270,      561,      1;
    4782969,  18689527,  22278189,  10073955,   1733035,    98661,   1263,    1;
  100000000, 457947691, 677785807, 410994583, 106215619, 10996369, 379693, 2797, 1;
		

Crossrefs

Programs

  • Magma
    A156653:= func< n,k | ((-1)^(n+k)/(n+1))*(&+[ (-1)^j*Factorial(j)*StirlingSecond(n, j)*Binomial(n-j, k)*Binomial(n+j, j) : j in [0..n]]) >;
    [1] cat [A156653(n,k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Mar 01 2021
    
  • Mathematica
    T[n_, m_]:= Sum[(-1)^(n+m+k) k! StirlingS2[n, k] Binomial[n-k, m] Binomial[n+k, k], {k, 0, n}]/(n+1);
    Prepend[Table[T[n, m], {n,10}, {m, 0, n-1}]//Flatten, 1] (* Peter Luschny, May 11 2020 *)
  • Maxima
    T(n,m):=sum(k!*stirling2(n,k)*(-1)^(n+m+k)*binomial(n-k,m)*binomial(n+k,k),k,0,n) /(n+1); /* Vladimir Kruchinin, May 11 2020 */
    
  • Sage
    def A156653(n,k): return ((-1)^(n+k)/(n+1))*sum( (-1)^j*factorial(j)* stirling_number2(n, j)*binomial(n-j, k)*binomial(n+j, j) for j in (0..n))
    [1]+flatten([[A156653(n,k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Mar 01 2021

Formula

T(n, m) = [x^m] p(x,n) where p(x,n) = (1-x)^(2*n+1)/((n+1)*x^n)*Sum_{k>=0} (k+1)^n* binomial(k, n)*x^k.
T(n, m) = 1/(n+1)*Sum_{k=0..n} (-1)^(n+m+k)*k!*Stirling2(n,k)*C(n-k,m)*C(n+k,k). - Vladimir Kruchinin, May 05 2020
E.g.f. satisfies: A(x,y) = x*E(A(x,y),y), where E(x,y) is e.g.f. of Euler numbers of first kind A008292. - Vladimir Kruchinin, May 05 2020

Extensions

New name by Vladimir Kruchinin, May 11 2020

A375826 E.g.f. satisfies A(x) = 1/(1 - x*A(x))^(x^2).

Original entry on oeis.org

1, 0, 0, 6, 12, 40, 1260, 11088, 99120, 1926720, 32800320, 535328640, 11274642720, 259872088320, 6108539621184, 158608655251200, 4495317057504000, 134114095312404480, 4253953999500357120, 143971794376985272320, 5141239842495675340800
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, (n-2*k+1)^(k-1)*abs(stirling(n-2*k, k, 1))/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (n-2*k+1)^(k-1) * |Stirling1(n-2*k,k)|/(n-2*k)!.

A048870 Triangle of coefficients of certain Sheffer-polynomials.

Original entry on oeis.org

1, 1, 1, 4, 10, 1, 30, 132, 27, 1, 336, 2232, 696, 52, 1, 5040, 46320, 19500, 2200, 85, 1, 95040, 1141920, 606960, 91800, 5340, 126, 1, 2162160, 32639040, 20991600, 3986640, 310170, 11004, 175, 1, 57657600, 1061746560, 802287360, 183550080
Offset: 0

Views

Author

Keywords

Comments

s(n,x) := sum(a(n,m)*x^m,m=0..n) are monic polynomials satisfying s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials p(n,x)=sum(A048786(n,m)*x^m, m=1..n) (row polynomials of triangle A048786) and p(0,x)=1. In the umbral calculus (see reference) the s(n,x) are called Sheffer polynomials for(c(t/(1+4*t)),t/(1+4*t)), where c(x) = g.f. for Catalan numbers A000108. a(n,0) = A001761(n-2) = n!*A000108(n).

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.

Crossrefs

Formula

a(n, m) = (n!/m!)*A046527(n, m) = (n!/m!)*binomial(n, m-1)*(4^(n-m+1)-binomial(2*n, n)/binomial(2*(m-1), m-1))/2, n >= m >= 0, a(n, m) := 0, n

A104053 Triangle of coefficients in the numerators of rational functions in tanh(1) that express the (2n)th du Bois-Reymond constants as C_0 = 0, C_2 = -4 - 1/(1-tanh(1)), for n>1, C_2n = -3 - (Sum_{k=0..n} a(n,k)*tanh(1)^k) / (2^n*n! * (1-tanh(1))^n).

Original entry on oeis.org

0, 1, 0, 1, -1, -1, -1, 0, 0, 3, 1, -5, 18, -13, -7, -11, 70, -135, 65, -10, 45, 111, -609, 1215, -1350, 1275, -621, -141, -1009, 6188, -16758, 27335, -26845, 12474, -2548, 1883, 10977, -81353, 270004, -511791, 584710, -420287, 216468, -70169, -3599, -146691, 1248210, -4715217, 10303461, -14439411
Offset: 0

Author

Gerald McGarvey, Mar 02 2005

Keywords

Comments

For n>0 the row sums = (-1)^(n-1) * (n-1)! For n odd, the sum of the absolute values of the coefficients in the n-th row = (2*(n-1))!/n! (every other entry of A001761).
The sum of the (2n)th du Bois-Reymond constants = 1/5 or is very close to 1/5.
For the 6th and 9th rows, the coefficients were adjusted from results of the residue evaluations so that double factorials ((2n)!! = 2^n*n! (A000165)) are in the denominators. For the 6th row they were multiplied by 3, for the 9th row they were multiplied by 9.
For n>1, Sum_{k=0..n} (n-k+1)*a(n,k) = (-1)^(n)*A001286(n-1) [A001286 are Lah numbers: (n-1)*n!/2].

Programs

  • Mathematica
    Table[2 Residue[x^2/((1+x^2)^n (Tan[x]-x)), {x, I}], {n, 0, 9}]

Formula

For n>1, C_2n = -3 - 2 * Residue_{x=i} (x^2/((1+x^2)^n * (tan(x) - x))) (see MathWorld article).
For n>1, Sum_{k=0..n} (-1)^(n+k)*a(n, k) = (2*(n-1))!/n! (i.e., A001761(n-1)).

Extensions

Added the keyword tabl Gerald McGarvey, Aug 20 2009

A335748 T(n,k) = (-1)^n*(binomial(2*k,k)/(k+1))*Sum_{j=0..n} (-1)^j*binomial(k,j)*j^n. Triangle read by rows, T(n, k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, -1, 4, 0, 1, -12, 30, 0, -1, 28, -180, 336, 0, 1, -60, 750, -3360, 5040, 0, -1, 124, -2700, 21840, -75600, 95040, 0, 1, -252, 9030, -117600, 705600, -1995840, 2162160, 0, -1, 508, -28980, 571536, -5292000, 25280640, -60540480, 57657600
Offset: 0

Author

Peter Luschny, Jul 09 2020

Keywords

Examples

			                             [0] 1
                           [1] 0, 1
                         [2] 0, -1, 4
                       [3] 0, 1, -12, 30
                   [4] 0, -1, 28, -180, 336
                [5] 0, 1, -60, 750, -3360, 5040
          [6] 0, -1, 124, -2700, 21840, -75600, 95040
   [7] 0, 1, -252, 9030, -117600, 705600, -1995840, 2162160
[8] 0, -1, 508, -28980, 571536, -5292000, 25280640, -60540480, 57657600
		

Crossrefs

Cf. A006531 (row sums), A052895 (absolute row sums), T(n,n) = A001761(n) (signed A292220(n)).

Formula

T(n, k) = (-1)^n*CatalanNumber(k)*Sum_{j=0..n}(-1)^j*binomial(k, j)*j^n.

A376350 E.g.f. satisfies A(x) = 1/(1 - x^2*A(x)^2)^(x*A(x)).

Original entry on oeis.org

1, 0, 0, 6, 0, 60, 2520, 1680, 181440, 6138720, 18295200, 1444988160, 46443196800, 357015859200, 25016537145600, 818965321574400, 12259854032025600, 815066633667686400, 28461465853402982400, 691667282863484928000, 45198900807076912896000, 1739192274792359202816000, 60318174486002275287244800
Offset: 0

Author

Seiichi Manyama, Sep 21 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x^2)^x)/x))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (n+1)^(n-2*k-1)*abs(stirling(k, n-2*k, 1))/k!);

Formula

E.g.f.: (1/x) * Series_Reversion( x*(1 - x^2)^x ).
a(n) = n! * Sum_{k=0..floor(n/2)} (n+1)^(n-2*k-1) * |Stirling1(k,n-2*k)|/k!.
Previous Showing 31-39 of 39 results.