cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 544 results. Next

A381912 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / B(x) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 3, 17, 124, 1038, 9470, 91586, 923542, 9608323, 102403921, 1112500651, 12275235274, 137193964646, 1549964417407, 17672282336488, 203092563108610, 2350061579393077, 27357919380212638, 320186582453226290, 3765185566095185740, 44465070300433434901, 527131055014319691537
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(3*n-k+1, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x))^2.
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(3*n-k+1,n-k)/(n+3*k+1).

A381913 Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / B(x) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 4, 28, 245, 2422, 25860, 291106, 3405405, 41014131, 505344113, 6341182427, 80768735045, 1041645452650, 13575670575944, 178528253213469, 2366073408348545, 31571528771106126, 423794981085407622, 5718929869862880055, 77539914280883389432, 1055790501909183080512
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(4*n-k+2, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x))^3.
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(4*n-k+2,n-k)/(n+3*k+1).

A381984 E.g.f. A(x) satisfies A(x) = exp(x) * B(x), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 2, 9, 94, 1649, 40146, 1246057, 47004014, 2087644449, 106709890114, 6170322084041, 398219508589662, 28376096583546769, 2212797385807852754, 187441592012756668329, 17139223549605292448686, 1682551982313514625386817, 176505773149909540258262274, 19704960849698723062181296009
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2025

Keywords

Comments

For each positive integer k, the sequence obtained by reducing a(n) modulo k is a periodic sequence with period dividing k. For example, modulo 6 the sequence becomes [1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, ...] with period 6. Cf. A047974. - Peter Bala, Mar 13 2025

Crossrefs

Programs

  • Maple
    seq(simplify(hypergeom([-n, 1/3, 2/3], [3/2], -27/4)), n = 0..18); # Peter Bala, Mar 13 2025
  • Mathematica
    Table[HypergeometricPFQ[{-n, 1/3, 2/3}, {3/2}, -27/4], {n, 0, 20}] (* Vaclav Kotesovec, Mar 14 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n, binomial(3*k+1, k)/((3*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} A001764(k)/(n-k)!.
From Peter Bala, Mar 13 2025: (Start)
a(n) = hypergeom([-n, 1/3, 2/3], [3/2], -27/4).
2*(2*n + 1)*a(n) = (27*n^2 - 19*n + 4)*a(n-1) - 2*(n - 1)*(27*n - 25)*a(n-2) + 27*(n - 1)*(n - 2)*a(n-3) with a(0) = 0, a(1) = 2 and a(2) = 9. (End)
a(n) ~ 3^(3*n + 1/2) * n^(n + 1/2) / (2^(2*n + 3/2) * exp(n - 4/27) * n^(3/2)). - Vaclav Kotesovec, Mar 14 2025

A381986 E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 2, 17, 388, 14329, 727206, 46984729, 3689119624, 341097752657, 36302764864330, 4371463743828481, 587606216836328460, 87219196719691250185, 14168990447072685567214, 2500554381188629649979593, 476391652257266128440376336, 97447147561230881896398507553
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (2*k+1)^(n-k)*binomial(5*k+1, k)/((5*k+1)*(n-k)!));

Formula

Let F(x) be the e.g.f. of A382000. F(x) = B(x*A(x)^2) = exp( 1/3 * Sum_{k>=1} binomial(3*k,k) * (x*A(x)^2)^k/k ).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(n-k) * A002294(k)/(n-k)!.

A382030 E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 3, 37, 817, 25741, 1053211, 52957297, 3157457185, 217695187801, 17036331544531, 1491702434847901, 144479729938558609, 15335923797225215653, 1770255543485671432555, 220776904683577075549801, 29582947262972619472787521, 4238424613351537181204589745, 646565304924896452410832170787
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, n!*sum(k=0, n-1, (2*k+1)^(n-k-1)*binomial(n+2*k, k)/((n+2*k)*(n-k-1)!)));

Formula

Let F(x) be the e.g.f. of A382043. F(x) = log(A(x))/x = B(x*A(x)^2).
a(n) = n! * Sum_{k=0..n-1} (2*k+1)^(n-k-1) * binomial(n+2*k,k)/((n+2*k) * (n-k-1)!) for n > 0.

A382087 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^2) ), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 7, 106, 2525, 82536, 3436867, 174045376, 10385025849, 713599868800, 55498397386751, 4819444051348224, 462246012357060373, 48531686994029295616, 5536163290789601602875, 681824639839489261060096, 90168540044259473683829873, 12744019609725371553920876544
Offset: 0

Views

Author

Seiichi Manyama, Mar 15 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (n+1)^(n-k-1)*binomial(2*n+k-1, k)/(n-k-1)!));

Formula

E.g.f. A(x) satisfies A(x) = exp(x*A(x) * B(x*A(x))^2).
a(n) = (n-1)! * Sum_{k=0..n-1} (n+1)^(n-k-1) * binomial(2*n+k-1,k)/(n-k-1)! for n > 0.
E.g.f.: exp( Series_Reversion( x * (1-x)^2 * exp(-x) ) ).

A124817 Interpolation of A001764(n+1) and A006629(n).

Original entry on oeis.org

1, 1, 3, 4, 12, 18, 55, 88, 273, 455, 1428, 2448, 7752, 13566, 43263, 76912, 246675, 444015, 1430715, 2601300, 8414640, 15426840, 50067108, 92431584, 300830572, 558685348, 1822766520, 3402497504, 11124755664, 20858916870, 68328754959
Offset: 0

Views

Author

Paul Barry, Nov 08 2006

Keywords

Comments

A column of number triangle A124816.

Formula

a(n)=(1/(2(n+3)))*C(3n/2+3,n/2+1)(1+(-1)^n)+(2/(n+3))*C(3(n+1)/2,(n-1)/2)(1-(-1)^n)

A127927 G.f. A(x) satisfies: [x^(2n)] A(x)/Catalan(x)^n = A001764(n) = C(3n,n)/(2n+1) and [x^(2n+1)] A(x)/Catalan(x)^n = A001764(n+1) for n>=0, where Catalan(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 3, 9, 31, 108, 391, 1431, 5319, 19926, 75252, 285750, 1090491, 4177774, 16060401, 61916977, 239307063, 926929746, 3597296770, 13984508500, 54448030092, 212282062488, 828673761978, 3238495227846, 12669206034339
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2007

Keywords

Comments

Main diagonal of triangle A062745: a(n) = A062745(n,n) (see formula given in A062745 by Emeric Deutsch).

Crossrefs

Cf. A062745; A001764 (ternary trees), A000108 (Catalan).

Programs

  • Magma
    [1] cat [Binomial(2*n,n) - (-1)^(n-1)*(&+[Binomial(3*k, k)*Binomial(k-n - 1, n-2*k-1)/(2*k+1): k in [0..Floor((n-1)/2)]]): n in [1..50]]; // G. C. Greubel, Apr 30 2018
  • Mathematica
    a[n_] := Binomial[2*n, n] - (-1)^(n-1)*Sum[ Binomial[3*k, k]*Binomial[k - n-1, n-1-2*k]/(2*k+1), {k, 0, Floor[(n-1)/2]}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 30 2018 *)
  • PARI
    {a(n)=binomial(2*n,n)+(-1)^n*sum(i=0,(n-1)\2, binomial(3*i,i) *binomial(i-n-1,n-1-2*i)/(2*i+1))}
    

Formula

a(n) = C(2*n,n) - (-1)^(n-1)*Sum_{i=0..[(n-1)/2]} C(3*i,i)*C(i-n-1,n-1-2*i)/(2*i+1).
From Vaclav Kotesovec, May 01 2018: (Start)
Recurrence: 2*(n-1)*n*(2*n + 1)*(5*n - 6)*a(n) = (n-1)^2*(115*n^2 - 138*n + 56)*a(n-1) + 4*(n-2)*(n+1)*(2*n - 3)*(5*n - 11)*a(n-2) - 36*(n-2)*(2*n - 5)*(2*n - 3)*(5*n - 1)*a(n-3).
a(n) ~ 4^n / (phi^2 * sqrt(Pi*n)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. (End)

A153292 G.f.: A(x) = F(x*F(x)^2) where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 5, 31, 211, 1516, 11295, 86423, 675051, 5361323, 43171480, 351709926, 2894115003, 24022408477, 200918146461, 1691749323232, 14329850844625, 122028162988698, 1044131083377287, 8972696721635997, 77408293908402336
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2009

Keywords

Examples

			G.f.: A(x) = F(x*F(x)^2) = 1 + x + 5*x^2 + 31*x^3 + 211*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(3*(n-k)+2*k,n-k)*2*k/(3*(n-k)+2*k)))}

Formula

a(n) = Sum_{k=0..n} C(3k+1,k)/(3k+1) * C(3n-k,n-k)*2k/(3n-k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*F(x)^2*A(x)^3 where F(x) is the g.f. of A001764.
G.f. satisfies: A(x/G(x)) = F(x*G(x)) where G(x) = F(x/G(x)) is the g.f. of A000108 and F(x) is the g.f. of A001764.

A153295 G.f.: A(x) = F(x*G(x)^2) where F(x) = G(x/F(x)) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 4, 20, 110, 638, 3828, 23515, 146972, 930869, 5958094, 38462190, 250054804, 1635421543, 10750864640, 70987129653, 470542935654, 3129729034478, 20880459397920, 139689406647522, 936832986074664, 6297064070279195
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)^2) = 1 + x + 4*x^2 + 20*x^3 + 110*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
G(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 48*x^3 + 276*x^4 + 1656*x^5 +...
G(x)^2*A(x)^2 = 1 + 4*x + 20*x^2 + 110*x^3 + 638*x^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(3*(n-k)+2*k,n-k)*2*k/(3*(n-k)+2*k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(3n-k,n-k)*2k/(3n-k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)^2*A(x)^2 where G(x) is the g.f. of A001764.
G.f. satisfies: A(x/F(x)) = F(x*F(x)) where F(x) is the g.f. of A000108 (Catalan).
From Alexander Burstein, Nov 23 2019: (Start)
G.f. satisfies: A(x) = 1 + x*G(x)^3*m(x*G(x)^3), where m(x) is the g.f. of A001006 (Motzkin numbers) and G(x) is the g.f. of A001764 (ternary trees).
G.f. satisfies: A(-x*A(x)^7) = 1/A(x). (End)
Previous Showing 31-40 of 544 results. Next