A381912
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / B(x) ), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 3, 17, 124, 1038, 9470, 91586, 923542, 9608323, 102403921, 1112500651, 12275235274, 137193964646, 1549964417407, 17672282336488, 203092563108610, 2350061579393077, 27357919380212638, 320186582453226290, 3765185566095185740, 44465070300433434901, 527131055014319691537
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(3*n-k+1, n-k)/(n+3*k+1));
A381913
Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / B(x) ), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 4, 28, 245, 2422, 25860, 291106, 3405405, 41014131, 505344113, 6341182427, 80768735045, 1041645452650, 13575670575944, 178528253213469, 2366073408348545, 31571528771106126, 423794981085407622, 5718929869862880055, 77539914280883389432, 1055790501909183080512
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(4*n-k+2, n-k)/(n+3*k+1));
A381984
E.g.f. A(x) satisfies A(x) = exp(x) * B(x), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 2, 9, 94, 1649, 40146, 1246057, 47004014, 2087644449, 106709890114, 6170322084041, 398219508589662, 28376096583546769, 2212797385807852754, 187441592012756668329, 17139223549605292448686, 1682551982313514625386817, 176505773149909540258262274, 19704960849698723062181296009
Offset: 0
-
seq(simplify(hypergeom([-n, 1/3, 2/3], [3/2], -27/4)), n = 0..18); # Peter Bala, Mar 13 2025
-
Table[HypergeometricPFQ[{-n, 1/3, 2/3}, {3/2}, -27/4], {n, 0, 20}] (* Vaclav Kotesovec, Mar 14 2025 *)
-
a(n) = n!*sum(k=0, n, binomial(3*k+1, k)/((3*k+1)*(n-k)!));
A381986
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 2, 17, 388, 14329, 727206, 46984729, 3689119624, 341097752657, 36302764864330, 4371463743828481, 587606216836328460, 87219196719691250185, 14168990447072685567214, 2500554381188629649979593, 476391652257266128440376336, 97447147561230881896398507553
Offset: 0
A382030
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 3, 37, 817, 25741, 1053211, 52957297, 3157457185, 217695187801, 17036331544531, 1491702434847901, 144479729938558609, 15335923797225215653, 1770255543485671432555, 220776904683577075549801, 29582947262972619472787521, 4238424613351537181204589745, 646565304924896452410832170787
Offset: 0
-
a(n) = if(n==0, 1, n!*sum(k=0, n-1, (2*k+1)^(n-k-1)*binomial(n+2*k, k)/((n+2*k)*(n-k-1)!)));
A382087
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^2) ), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 7, 106, 2525, 82536, 3436867, 174045376, 10385025849, 713599868800, 55498397386751, 4819444051348224, 462246012357060373, 48531686994029295616, 5536163290789601602875, 681824639839489261060096, 90168540044259473683829873, 12744019609725371553920876544
Offset: 0
-
a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (n+1)^(n-k-1)*binomial(2*n+k-1, k)/(n-k-1)!));
Original entry on oeis.org
1, 1, 3, 4, 12, 18, 55, 88, 273, 455, 1428, 2448, 7752, 13566, 43263, 76912, 246675, 444015, 1430715, 2601300, 8414640, 15426840, 50067108, 92431584, 300830572, 558685348, 1822766520, 3402497504, 11124755664, 20858916870, 68328754959
Offset: 0
A127927
G.f. A(x) satisfies: [x^(2n)] A(x)/Catalan(x)^n = A001764(n) = C(3n,n)/(2n+1) and [x^(2n+1)] A(x)/Catalan(x)^n = A001764(n+1) for n>=0, where Catalan(x) is the g.f. of A000108.
Original entry on oeis.org
1, 1, 3, 9, 31, 108, 391, 1431, 5319, 19926, 75252, 285750, 1090491, 4177774, 16060401, 61916977, 239307063, 926929746, 3597296770, 13984508500, 54448030092, 212282062488, 828673761978, 3238495227846, 12669206034339
Offset: 0
-
[1] cat [Binomial(2*n,n) - (-1)^(n-1)*(&+[Binomial(3*k, k)*Binomial(k-n - 1, n-2*k-1)/(2*k+1): k in [0..Floor((n-1)/2)]]): n in [1..50]]; // G. C. Greubel, Apr 30 2018
-
a[n_] := Binomial[2*n, n] - (-1)^(n-1)*Sum[ Binomial[3*k, k]*Binomial[k - n-1, n-1-2*k]/(2*k+1), {k, 0, Floor[(n-1)/2]}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 30 2018 *)
-
{a(n)=binomial(2*n,n)+(-1)^n*sum(i=0,(n-1)\2, binomial(3*i,i) *binomial(i-n-1,n-1-2*i)/(2*i+1))}
A153292
G.f.: A(x) = F(x*F(x)^2) where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 5, 31, 211, 1516, 11295, 86423, 675051, 5361323, 43171480, 351709926, 2894115003, 24022408477, 200918146461, 1691749323232, 14329850844625, 122028162988698, 1044131083377287, 8972696721635997, 77408293908402336
Offset: 0
G.f.: A(x) = F(x*F(x)^2) = 1 + x + 5*x^2 + 31*x^3 + 211*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(3*(n-k)+2*k,n-k)*2*k/(3*(n-k)+2*k)))}
A153295
G.f.: A(x) = F(x*G(x)^2) where F(x) = G(x/F(x)) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)) = 1 + x*G(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 4, 20, 110, 638, 3828, 23515, 146972, 930869, 5958094, 38462190, 250054804, 1635421543, 10750864640, 70987129653, 470542935654, 3129729034478, 20880459397920, 139689406647522, 936832986074664, 6297064070279195
Offset: 0
G.f.: A(x) = F(x*G(x)^2) = 1 + x + 4*x^2 + 20*x^3 + 110*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
G(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 48*x^3 + 276*x^4 + 1656*x^5 +...
G(x)^2*A(x)^2 = 1 + 4*x + 20*x^2 + 110*x^3 + 638*x^4 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(3*(n-k)+2*k,n-k)*2*k/(3*(n-k)+2*k)))}
Comments