cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A162442 Denominators of the column sums of the EG1 matrix coefficients.

Original entry on oeis.org

2, 16, 48, 512, 1280, 2048, 14336, 262144, 589824, 2621440, 5767168, 50331648, 109051904, 469762048, 67108864, 34359738368, 73014444032, 103079215104, 652835028992, 1099511627776, 3848290697216, 48378511622144
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

For the definition of the EG1 matrix coefficients see A162440.
We define the columns sums by cs(n) = sum(EG1[2*m-1,n], m = 1.. infinity) for n => 2.

Crossrefs

Equals A052469(n-1)/2 for n=>2.
cs(n) = (1/(n-1))*A001803(n-1)/A046161(n-1) for n=>2.
Cf. A162440 and A162441.

Formula

a(n) = denom(cs(n)) and numer(cs(n)) = A162441(n) with cs(n) = (2^(2-2*n)/(n-1))*((2*n-1)!/((n-1)!^2)).
a(n) = denom((1/(n-1))*(2*n-1)*binomial(2*n-2,n-1)/4^(n-1))

A173755 Table read by rows, T(n,k) = (-1)^(n-k)*2^(2*k-bw(k)), where bw(k) is the binary weight of k (A000120).

Original entry on oeis.org

1, -1, 2, 1, -2, 8, -1, 2, -8, 16, 1, -2, 8, -16, 128, -1, 2, -8, 16, -128, 256, 1, -2, 8, -16, 128, -256, 1024, -1, 2, -8, 16, -128, 256, -1024, 2048, 1, -2, 8, -16, 128, -256, 1024, -2048, 32768, -1, 2, -8, 16, -128, 256, -1024, 2048, -32768, 65536, 1, -2, 8, -16, 128, -256, 1024, -2048, 32768, -65536, 262144
Offset: 0

Views

Author

Paul Curtz, Feb 23 2010

Keywords

Comments

Old name was: Table of the numerators of the higher order differences of the binomial transform of the Madhava-Gregory-Leibniz series for Pi/4.
The binomial transform of 1, -1/3, 1/5, -1/7, 1/9 is given by the sequence A046161(n)/A001803(n).
This sequence of fractions and its higher order differences in the subsequent rows start as:
1, 2/3, 8/15, 16/35, 128/315, 256/693, 1024/3003, ...
-1/3, -2/15, -8/105, -16/315, -128/3465, -256/9009, -1024/45045, ...
1/5, 2/35, 8/315, 16/1155, 128/15015, 256/45045, 1024/255255, ...
-1/7, -2/64, -8/693, -16/3003, -128/45045, ...
The numerators of this array, read upwards along antidiagonals, define the current sequence.

Examples

			Triangle begins:
   1;
  -1,    2;
   1,   -2,    8;
  -1,    2,   -8,   16;
   1,   -2,    8,  -16,  128;
  -1,    2,   -8,   16, -128,  256;
   1,   -2,    8,  -16,  128, -256, 1024;
		

Crossrefs

Programs

  • Magma
    A173755:= func< n,k | (-1)^(n-k)*2^(k + Valuation(Factorial(k), 2)) >;
    [A173755(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 24 2024
  • Maple
    A173755 := proc(n,k)
            local L,i;
            L := [seq((-1)^i/(2*i+1),i=0..n+k)] ;
            L := BINOMIAL(L);
            for i from 1 to n do
                    L := DIFF(L) ;
            end do:
            op(1+k,L) ;
            numer(%) ;
    end proc: # R. J. Mathar, Sep 22 2011
    A173755 := proc(n, k) local w; w := proc(n) option remember;
    `if`(n=0,1,2^(padic[ordp](2*n,2))*w(n-1)) end: (-1)^(n-k)*w(k) end:
    for n from 0 to 8 do seq(A173755(n,k),k=0..n) od; # Peter Luschny, Nov 16 2012
  • Mathematica
    Table[(-1)^(n - k)*2^(2 k - DigitCount[k, 2, 1]), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 21 2019 *)
  • Sage
    def A173755(n,k):
        A005187 = lambda n: A005187(n//2) + n if n > 0 else 0
        return (-1)^(n-k)*2^A005187(k)
    for n in (0..8):
        [A173755(n,k) for k in (0..n)]  # Peter Luschny, Nov 16 2012
    

Formula

T(n,k) = (-1)^(n-k)*denom(binomial(-1/2,k)). - Peter Luschny, Nov 21 2012

Extensions

Simpler definition by Peter Luschny, Nov 21 2012

A225043 Pascal's triangle with row n reduced modulo n+1.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 1, 4, 1, 1, 5, 4, 4, 5, 1, 1, 6, 1, 6, 1, 6, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 8, 1, 2, 7, 2, 1, 8, 1, 1, 9, 6, 4, 6, 6, 4, 6, 9, 1, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 1, 11, 7, 9, 6, 6, 6, 6, 9, 7, 11, 1, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 25 2013

Keywords

Comments

The row sums are: {0, 2, 4, 8, 11, 20, 22, 32, 31, 52, 56, ...}.
Since row n is only defined mod n+1, it would seem better to reduce the row sums mod n+1, which gives A062173. - N. J. A. Sloane, Apr 28 2013

Examples

			{0},
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, 4, 1, 4, 1},
{1, 5, 4, 4, 5, 1},
{1, 6, 1, 6, 1, 6, 1},
{1, 7, 5, 3, 3, 5, 7, 1},
{1, 8, 1, 2, 7, 2, 1, 8, 1},
{1, 9, 6, 4, 6, 6, 4, 6, 9, 1},
{1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1},
{1, 11, 7, 9, 6, 6, 6, 6, 9, 7, 11, 1},
{1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1},...
		

Crossrefs

Programs

  • Haskell
    a225043 n k = a225043_tabl !! n !! k
    a225043_row n = a225043_tabl !! n
    a225043_tabl = zipWith (map . flip mod) [1..] a007318_tabl
    -- Reinhard Zumkeller, Jun 12 2013
  • Mathematica
    Flatten[Table[Mod[Binomial[m, n], m + 1], {m, 0, 12}, {n, 0, m}]]
  • PARI
    T(m,n)=binomial(m,n)%(m+1) \\ Charles R Greathouse IV, Apr 25 2013
    

Formula

T(m,n) = binomial(m, n) mod m+1.

Extensions

Definition edited by N. J. A. Sloane, Apr 28 2013

A004735 Denominator of average distance traveled by n-dimensional fly.

Original entry on oeis.org

1, 3, 4, 15, 8, 35, 64, 315, 128, 693, 512, 3003, 1024, 6435, 16384, 109395, 32768, 230945, 131072, 969969, 262144, 2028117, 2097152, 16900975, 4194304, 35102025, 16777216, 145422675, 33554432
Offset: 1

Views

Author

Keywords

Comments

The average distance is actually d(n) = 2*n!!/(n+1)!! if n is odd, and d(n) = (1*Pi)*4*n!!/(n+1)!! if n is even. So a(n) = denominator(d(n)) if n is odd and a(n) = denominator(Pi*d(n)) if n is even. - Michel Marcus, May 24 2013

References

  • S. Janson, On the traveling fly problem, Graph Theory Notes of New York, Vol. XXXI, 17, 1996.

Crossrefs

Cf. A004734.

Programs

  • PARI
    a(n) = {if (n % 2, eo = 2, eo = 4); denominator(eo*prod(i=0, floor((n-1)/2), n-2*i)/prod(i=0, floor(n/2), n+1-2*i));} \\ Michel Marcus, May 24 2013

Formula

a(2n) = A001803(n) (conjectured). - Ralf Stephan, Mar 10 2004

A077595 Numerator of integral from 0 to 1 of (1 + x^2)^n, in lowest terms.

Original entry on oeis.org

1, 4, 28, 96, 1328, 4672, 33472, 121856, 3597056, 13417472, 33655808, 127508480, 5829259264, 22308732928, 171393728512, 660468137984, 40831182635008, 22589996269568, 175323994652672, 681560447647744, 10614717931323392, 289707123275726848, 2261982330593738752
Offset: 0

Views

Author

Michael Somos, Nov 06 2002

Keywords

Examples

			For n=3 the integral is 96/35, so a(3) = 96.
		

Crossrefs

Cf. A076729.

Programs

  • Mathematica
    a[n_] := Numerator[Integrate[(1 + x x)^n, {x, 0, 1}]]
    a[n_] := Hypergeometric2F1[-n, 1/2, 3/2, -1]
    Table[Numerator[a[n]], {n, 0, 20}] (* Gerry Martens, Aug 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, numerator( subst( intformal((1 + x^2)^n), x, 1)))}

Formula

From Fabian Pereyra, Aug 16 2024: (Start)
a(n) = numerator(Sum_{k=0..n} binomial(n,k)/(2*k+1)).
E.g.f.: Sum_{x>=0} a(n)/A001803(n)*x^n/n! = Integral_{z=0..1} e^(x*(1+z^2)) dz. (End)

A086228 Determinant of n X n matrix M(i,j)=binomial(2i+1, j).

Original entry on oeis.org

1, 3, 15, 140, 2520, 88704, 6150144, 843448320, 229417943040, 123987652771840, 133311524260282368, 285432092670742757376, 1217843595395169098137600, 10360289146303272377017958400, 175805226564926843718814452940800
Offset: 0

Views

Author

Benoit Cloitre, Aug 28 2003

Keywords

Crossrefs

Cf. A001803.

Programs

  • Magma
    [2^(n*(n-3)/2)*(n+1)*Binomial(2*n+1, n): n in [0..30]]; // G. C. Greubel, Jan 25 2018
  • Mathematica
    Table[2^(n*(n-3)/2)*(n+1)*Binomial[2*n+1, n], {n,0,30}] (* G. C. Greubel, Jan 25 2018 *)
  • PARI
    for(n=0, 30, print1(2^(n*(n-3)/2)*(n+1)*binomial(2*n+1, n), ", ")) \\ G. C. Greubel, Jan 25 2018
    

Formula

a(n) = 2^(n*(n-3)/2)*(n+1)*binomial(2*n+1, n)

A162441 Numerators of the column sums of the EG1 matrix coefficients.

Original entry on oeis.org

3, 15, 35, 315, 693, 1001, 6435, 109395, 230945, 969969, 2028117, 16900975, 35102025, 145422675, 20036013, 9917826435, 20419054425, 27981667175, 172308161025, 282585384081, 964378691705, 11835556670925, 24185702762325
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

For the definition of the EG1 matrix coefficients see A162440.
We define the columns sums by cs(n) = sum(EG1[2*m-1,n], m = 1.. infinity) for n => 2.
The row sums of the EG1 matrix follow the same pattern as those of its even counterpart the EG2 matrix, see A161739 and the formulas.

Crossrefs

Equals (2*n-1)*A052468(n-1)
Cf. A162440 and A162442 [denom(cs(n))].
Cf. A161739 (RSEG2 triangle), A001803 and A046161.

Formula

a(n) = numer(cs(n)) and denom(cs(n)) = A162442(n) with cs(n) = (2^(2-2*n)/(n-1))*((2*n-1)!/((n-1)!^2)).
cs(n) = 2*EG1[ -1,n]/(n-1) with EG1[ -1,n] = 2^(1-2*n)*(2*n-1)!/((n-1)!^2).
cs(n) = (1/(n-1))*A001803(n-1)/A046161(n-1) for n=>2.
rs(2*m-1,p=0) = sum((n^p)*EG1(2*m-1,n), n = 1..infinity) = 2*zeta(2*m-2) for m =>2.

A173296 Numerators of the inverse binomial transform of the Leibniz series for Pi/4.

Original entry on oeis.org

1, -4, 28, -96, 1328, -4672, 33472, -121856, 3597056, -13417472, 33655808, -127508480, 5829259264, -22308732928, 171393728512, -660468137984, 40831182635008, -22589996269568, 175323994652672, -681560447647744
Offset: 0

Views

Author

Paul Curtz, Feb 15 2010

Keywords

Comments

The series terms for Pi/4 are 1, -1/3, 1/5, -1/7, 1/9, -1/11, + ...
Its inverse binomial transform is 1, -4/3, 28/15, -96/35, 1328/315, -4672/693, + ...

Crossrefs

Programs

  • Maple
    L := [seq((-1)^n/(2*n+1),n=0..20)] ;
    read("transforms") ; BINOMIALi(L) ;
    apply(numer,%) ; # R. J. Mathar, Jul 06 2011

Extensions

a(3) replaced with reduced numerator and a(5) onwards added by R. J. Mathar, Jul 06 2011

A187791 Repeat n+1 times 2^A005187(n).

Original entry on oeis.org

1, 2, 2, 8, 8, 8, 16, 16, 16, 16, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536
Offset: 0

Views

Author

Paul Curtz, Jan 06 2013

Keywords

Comments

a(n) is the denominators of the antidiagonals of the Lorentz factor, which can be written A001790(n)/A046161(n), and its differences.
1, 1/2, 3/8, 5/16, 35/128, 63/256,... the Lorentz gamma factor,
-1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, ... -A098597(n)/A046161(n+1),from the Lorentz (beta) factor,
3/8, 1/16, 3/128, 3/256, 7/1024, 9/2048,... A161200(n+2)/A046161(n+2),
-5/16, -5/128, -3/256, -5/1024, -5/2048, -45/32768,... A161202(n+3)/A046161(n+4),
35/128, 7/256, 7/1024, 5/2048, 35/32768, 35/65536, ...
-63/256, -21/1024, -9/2048, -45/32768, -35/65536, -63/262144, ... .
Like 1/n and A164555(n)/A027642(n), the Lorentz factor is an autosequence of the second kind. The first column is the signed sequence.
The main diagonal is (-1)^n *A001790(n)/A061549(n).
The Lorentz factor is the differences of (0, followed by A001803(n)) / (1, followed by A046161(n)).
PiSK(n-2)=(0, 0, followed by A001803(n)) / (1, 1, followed by A046161(n)) is also an autosequence of second kind.
Remember that an autosequence of the second kind is a sequence whose inverse binomial transform is the sequence signed, with its main diagonal being the double of its first upper diagonal. - Paul Curtz, Oct 13 2013

Examples

			1,
2,   2,
8,   8,  8,
16, 16, 16, 16.
		

Crossrefs

Cf. A003506.

Programs

  • Mathematica
    Flatten[Table[Denominator[Binomial[2n, n]/4^n], {n, 0, 19}, {n + 1}]] (* Alonso del Arte, Jan 07 2013 *)
    (* Checking with the antidiagonals *) diff = Table[ Differences[ CoefficientList[ Series[1/Sqrt[1 - x], {x, 0, 9}], x], n], {n, 0, 9}]; Table[ diff[[n-k+1,k]] // Denominator,{n,0,10},{k,1,n}] // Flatten (* Jean-François Alcover, Jan 07 2013 *)
    Flatten[Table[2^IntegerExponent[(2*n)!, 2], {n, 0, 19}, {n + 1}]]; (* Jean-François Alcover, Mar 27 2013, after A005187 *)

Formula

Repeat A046161(n) n+1 times. Triangle.

Extensions

New definition by M. F. Hasler

A269949 Triangle read by rows, T(n,k) = denominator(binomial(-1/2, n-k))*binomial(n-1/2, k-1/2), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 5, 15, 5, 1, 35, 35, 35, 7, 1, 63, 315, 105, 63, 9, 1, 231, 693, 1155, 231, 99, 11, 1, 429, 3003, 3003, 3003, 429, 143, 13, 1, 6435, 6435, 15015, 9009, 6435, 715, 195, 15, 1, 12155, 109395, 36465, 51051, 21879, 12155, 1105, 255, 17, 1
Offset: 0

Views

Author

Peter Luschny, Apr 07 2016

Keywords

Comments

Numerators of "gravitational descendent fields" presented on p. 28 of the Zhou reference. See also p. 31. - Tom Copeland, Feb 13 2017

Examples

			Triangle starts:
[  1]
[  1,   1]
[  3,   3,    1]
[  5,  15,    5,   1]
[ 35,  35,   35,   7,  1]
[ 63, 315,  105,  63,  9,  1]
[231, 693, 1155, 231, 99, 11, 1]
		

Crossrefs

Cf. A001790 (col. 0), A001803 (col. 1), A161199 (col. 2), A161201 (col. 3).
Cf. A269950.

Programs

  • Mathematica
    Table[Denominator[Binomial[-1/2, n - k]] Binomial[n - 1/2, k - 1/2], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 13 2017 *)
  • Sage
    A269949 = lambda n,k: binomial(-1/2,n-k).denom()*binomial(n-1/2,k-1/2)
    for n in range(8): print([A269949(n,k) for k in (0..n)])
Previous Showing 31-40 of 49 results. Next