A340257
a(n) = 2^n * (1+n*(n+1)/2).
Original entry on oeis.org
1, 4, 16, 56, 176, 512, 1408, 3712, 9472, 23552, 57344, 137216, 323584, 753664, 1736704, 3964928, 8978432, 20185088, 45088768, 100139008, 221249536, 486539264, 1065353216, 2323644416, 5049942016, 10938744832, 23622320128, 50868518912, 109253230592, 234075717632
Offset: 0
-
a:= n-> 2^n*(1+n*(n+1)/2):
seq(a(n), n=0..30);
-
Table[2^n (1+(n(n+1))/2),{n,0,30}] (* or *) LinearRecurrence[{6,-12,8},{1,4,16},30] (* Harvey P. Dale, Jan 19 2023 *)
A052791
3^(n-3)*n*(n-1)*(n-2).
Original entry on oeis.org
0, 0, 0, 6, 72, 540, 3240, 17010, 81648, 367416, 1574640, 6495390, 25981560, 101328084, 386889048, 1450833930, 5356925280, 19514513520, 70252248672, 250273635894, 883318714920, 3091615502220, 10739295955080, 37050571045026, 127030529297232, 433058622604200, 1468633589701200
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Range[0, 20]! CoefficientList[Series[(x Exp[x])^3, {x, 0, 20}], x]
LinearRecurrence[{12,-54,108,-81},{0,0,0,6},30] (* Harvey P. Dale, Sep 02 2022 *)
-
a(n)=3^(n-3)*n*(n-1)*(n-2); /* Joerg Arndt, Sep 16 2012 */
A089264
Number of permutations of length n containing exactly once 132 and 213, likewise for pattern pair (231,312).
Original entry on oeis.org
3, 6, 17, 42, 102, 242, 564, 1296, 2944, 6624, 14784, 32768, 72192, 158208, 345088, 749568, 1622016, 3497984, 7520256, 16121856, 34471936, 73531392, 156499968, 332398592, 704643072, 1491075072, 3149922304, 6643777536, 13992198144
Offset: 4
-
LinearRecurrence[{6,-12,8},{3,6,17,42,102,242},40] (* Harvey P. Dale, Apr 10 2022 *)
A224288
Number of permutations of length n containing exactly 2 occurrences of 123 and 2 occurrences of 132.
Original entry on oeis.org
0, 0, 0, 0, 1, 6, 26, 94, 306, 934, 2732, 7752, 21488, 58432, 156288, 411904, 1071104, 2750976, 6984704, 17545216, 43634688, 107511808, 262602752, 636223488, 1529741312, 3652059136, 8660975616, 20412104704, 47826599936, 111446851584, 258360737792, 596044152832
Offset: 0
a(4) = 1: (1,2,4,3).
a(5) = 6: (2,3,5,1,4), (2,3,5,4,1), (2,5,1,3,4), (3,1,4,5,2), (4,1,2,5,3), (5,1,2,4,3).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- B. Nakamura, Approaches for enumerating permutations with a prescribed number of occurrences of patterns, arXiv 1301.5080 [math.CO], 2013.
- B. Nakamura, A Maple package for enumerating n-permutations with r occurrences of the pattern 123 and s occurrences of the pattern 132 [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (10,-40,80,-80,32).
-
# Programs can be obtained from the Nakamura link
-
Join[{0, 0, 0, 0, 1}, LinearRecurrence[{10, -40, 80, -80, 32}, {6, 26, 94, 306, 934}, 27]] (* Jean-François Alcover, Feb 29 2020 *)
A224290
Number of permutations of length n containing exactly 3 occurrences of 123 and 3 occurrences of 132.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 6, 30, 136, 566, 2176, 7808, 26440, 85332, 264632, 793792, 2315136, 6592640, 18390784, 50392064, 135921664, 361536512, 949708800, 2466807808, 6342115328, 16153509888, 40790523904, 102186352640, 254105092096, 627533152256, 1539764125696
Offset: 0
a(5) = 1: (1,4,3,2,5).
a(6) = 6: (2,5,4,3,1,6), (2,5,4,3,6,1), (3,5,1,4,6,2), (3,6,1,4,2,5), (5,1,4,3,2,6), (6,1,4,3,2,5).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- B. Nakamura, Approaches for enumerating permutations with a prescribed number of occurrences of patterns, arXiv 1301.5080 [math.CO], 2013.
- B. Nakamura, A Maple package for enumerating n-permutations with r occurrences of the pattern 123 and s occurrences of the pattern 132 [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (14,-84,280,-560,672,-448,128).
-
# Programs can be obtained from the Nakamura link
-
Join[{0, 0, 0, 0, 0, 1, 6}, LinearRecurrence[{14, -84, 280, -560, 672, -448, 128}, {30, 136, 566, 2176, 7808, 26440, 85332}, 33]] (* Jean-François Alcover, Nov 28 2018 *)
-
concat([0,0,0,0,0], Vec(x^5*(1 - 8*x + 30*x^2 - 60*x^3 + 62*x^4 - 36*x^5 + 24*x^6 - 8*x^7 + 4*x^8) / (1 - 2*x)^7 + O(x^40))) \\ Colin Barker, Nov 28 2018
A377582
Expansion of e.g.f. (1 + x * exp(x))^3.
Original entry on oeis.org
1, 3, 12, 51, 228, 1035, 4698, 21063, 92424, 395091, 1643790, 6664383, 26387100, 102286587, 389125506, 1455994935, 5368721808, 19541252259, 70312410774, 250408115823, 883617559140, 3092276105163, 10740749281482, 37053754521831, 127037475064728, 433073722098675
Offset: 0
A140880
Triangle read by rows, T(n,k) = Gamma(n+3)/(Gamma(k+1)*Gamma(n-k+1)) for n>=0 and 0<=k<=n.
Original entry on oeis.org
2, 6, 6, 12, 24, 12, 20, 60, 60, 20, 30, 120, 180, 120, 30, 42, 210, 420, 420, 210, 42, 56, 336, 840, 1120, 840, 336, 56, 72, 504, 1512, 2520, 2520, 1512, 504, 72, 90, 720, 2520, 5040, 6300, 5040, 2520, 720, 90
Offset: 0
Triangle starts:
[0] 2
[1] 6, 6
[2] 12, 24, 12
[3] 20, 60, 60, 20
[4] 30, 120, 180, 120, 30
[5] 42, 210, 420, 420, 210, 42
[6] 56, 336, 840, 1120, 840, 336, 56
[7] 72, 504, 1512, 2520, 2520, 1512, 504, 72
[8] 90, 720, 2520, 5040, 6300, 5040, 2520, 720, 90
-
T := (n,k) -> GAMMA(n+3)/(GAMMA(k+1)*GAMMA(n-k+1)):
seq(seq(T(n,k), k=0..n), n=0..8); # Peter Luschny, Oct 29 2017
-
Flatten[Table[Gamma[n+3]/(Gamma[k+1]Gamma[n-k+1]),{n,0,8},{k,0,n}]]
A224289
Number of permutations of length n containing exactly 1 occurrence of 123 and 2 occurrences of 132.
Original entry on oeis.org
0, 0, 0, 2, 8, 26, 79, 232, 664, 1856, 5072, 13568, 35584, 91648, 232192, 579584, 1427456, 3473408, 8359936, 19922944, 47054848, 110231552, 256311296, 591921152, 1358430208, 3099590656, 7034896384, 15888023552, 35718692864, 79960211456, 178291474432, 396076515328, 876844417024
Offset: 1
-
# Programs can be obtained from author's personal website.
-
LinearRecurrence[{8,-24,32,-16},{0,0,0,2,8,26,79},40] (* Harvey P. Dale, Jun 23 2017 *)
A224291
Number of permutations of length n containing exactly 4 occurrences of 123 and 4 occurrences of 132.
Original entry on oeis.org
0, 0, 0, 0, 1, 11, 60, 270, 1084, 4028, 14144, 47577, 154740, 489728, 1514786, 4593118, 13682374, 40106060, 115824376, 329901232, 927585696, 2576685888, 7076644480, 19228648192, 51725149184
Offset: 1
A370469
Triangle read by columns where T(n,k) is the number of points in Z^n such that |x1| + ... + |xn| = k, |x1|, ..., |xn| > 0.
Original entry on oeis.org
2, 2, 4, 2, 8, 8, 2, 12, 24, 16, 2, 16, 48, 64, 32, 2, 20, 80, 160, 160, 64, 2, 24, 120, 320, 480, 384, 128, 2, 28, 168, 560, 1120, 1344, 896, 256, 2, 32, 224, 896, 2240, 3584, 3584, 2048, 512, 2, 36, 288, 1344, 4032, 8064, 10752, 9216, 4608, 1024
Offset: 1
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-----------------------------------------------------------------------
1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 | 4 8 12 16 20 24 28 32 36 40 44 48 52 56
3 | 8 24 48 80 120 168 224 288 360 440 528 624 728
4 | 16 64 160 320 560 896 1344 1920 2640 3520 4576 5824
5 | 32 160 480 1120 2240 4032 6720 10560 15840 22880 32032
6 | 64 384 1344 3584 8064 16128 29568 50688 82368 128128
7 | 128 896 3584 10752 26880 59136 118272 219648 384384
8 | 256 2048 9216 30720 84480 202752 439296 878592
9 | 512 4608 23040 84480 253440 658944 1537536
10 | 1024 10240 56320 225280 732160 2050048
11 | 2048 22528 135168 585728 2050048
12 | 4096 49152 319488 1490944
13 | 8192 106496 745472
14 | 16384 229376
15 | 32768
The cross polytope in Z^3 (the octahedron) with points at distance 3 from the origin has 8 triangle facets, each with edge length 4. There is one point in the center of each triangle with coordinates (+-1,+-1,+-1).
-
T[n_,k_]:=Binomial[k-1,n-1]*2^n; Table[T[n,k],{k,10},{n,k}]//Flatten
-
from math import comb
def A370469_T(n,k): return comb(k-1,n-1)<Chai Wah Wu, Apr 25 2024
Comments