cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A055531 Number of labeled order relations on n nodes in which longest chain has 2 nodes.

Original entry on oeis.org

2, 12, 86, 840, 11642, 227892, 6285806, 243593040, 13262556722, 1014466283292, 109128015915206, 16521353903210520, 3524056001906654762, 1059868947134489801412, 449831067019305308555486, 269568708630308018001547680, 228228540531327778410439620962
Offset: 2

Views

Author

N. J. A. Sloane, Jul 10 2000

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.

Crossrefs

A column or diagonal of triangle in A342587.

Formula

a(n) = A001831(n)-1.
a(n) = Sum_{k=1..n-1} binomial(n,k)*(2^(n-k)-1)^k. - Geoffrey Critzer, Oct 29 2023

Extensions

More terms from Vladeta Jovovic, Oct 24 2000
a(13)-a(16) corrected and more terms from Sean A. Irvine, Mar 25 2022

A360743 Number of idempotent binary relation matrices E on [n] such that E contains an identity matrix of order n-1 and (E - I_n)^2 = 0.

Original entry on oeis.org

1, 2, 9, 52, 435, 5046, 81501, 1823144, 56572263, 2435930410, 145888123953, 12173595399516, 1418664206897691, 231298954644947294, 52860840028599821445, 16957903154151836822608, 7647128139328190245443279, 4852236755345544324027858258
Offset: 0

Views

Author

Geoffrey Critzer, Feb 18 2023

Keywords

Comments

A Boolean relation matrix R is said to be convergent in its powers if in the sequence {R,R^2,R^3, ...} there is an m such that R^m = R^(m+1).
An idempotent Boolean relation matrix E is said to have a proper power primitive iff there is a convergent relation R with limit matrix E where R is not equal to E.
If an idempotent Boolean relation matrix E contains an identity matrix of order n-1 and (E-I_n)^2 = 0 then E has no proper power primitive. The converse is not true for n>=4. Consider {{1,0,1,0}, {0,1,0,1}, {0,0,0,0}, {0,0,0,0}}. The converse is erroneously stated and proved in Rosenblatt, Theorem 4.

Crossrefs

Programs

  • Maple
    a:= n-> (n+1)*add(binomial(n, k)*(2^k-1)^(n-k), k=0..n):
    seq(a(n), n=0..18);  # Alois P. Heinz, Feb 18 2023
  • Mathematica
    nn = 16; A[x_] := Sum[x^n/n! Exp[(2^n - 1) x], {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[A[x] + x D[A[x], x], {x, 0, nn}], x]

Formula

a(n) = (n + 1)*A001831(n).
E.g.f.: x*A'(x) + A(x) where A(x) = Sum_{n>=0} x^n/n! exp((2^n-1)*x) is the e.g.f. for A001831.

Extensions

Corrected by Geoffrey Critzer, Feb 24 2023

A122801 Number of labeled bipartite graphs on 2n vertices having equal parts and no isolated vertices.

Original entry on oeis.org

1, 1, 21, 2650, 1452605, 3149738046, 26503552820514, 868081172737564500, 111606080497500509325405, 56762846667123360827351083510, 114847831981827229530824587617895286, 927685362544629192461621864598358779955500, 29976424929810726580224613882836823991388901138994
Offset: 0

Views

Author

Max Alekseyev, Sep 11 2006

Keywords

Crossrefs

Programs

  • PARI
    { A122801(n) = binomial(2*n-1,n) * sum(k=0, n, binomial(n, k) * (-1)^k * (2^(n-k)-1)^n ); }

Formula

For n>0, a(n) = A001700(n-1) * A048291(n) = A052332(2n) - A122802(2n).

Extensions

Terms a(11) and beyond from Andrew Howroyd, Nov 07 2019

A122802 Number of labeled bipartite graphs on n vertices with no isolated vertices.

Original entry on oeis.org

1, 0, 1, 6, 29, 510, 5032, 161406, 3294405, 194342910, 7934652356, 881008805886, 71275547085536, 15178191426486270, 2434250064518832302, 1008694542117649154046, 321680912414994434144165, 262063364967549826752315390, 166681427053102507699172431372
Offset: 0

Views

Author

Max Alekseyev, Sep 11 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)={sum(k=0, n, binomial(n, k)*(2^k-2)^(n-k)) - if(n%2==0&&n>0, binomial(n-1, n/2)*sum(k=0, n/2, binomial(n/2, k)*(-1)^k*(2^(n/2-k)-1)^(n/2)))} \\ Andrew Howroyd, Nov 07 2019

Formula

a(2n+1) = A052332(2n+1); a(2n) = A052332(2n) - A122801(n) for n > 0.

Extensions

Terms a(17) and beyond from Andrew Howroyd, Nov 07 2019

A360933 Expansion of e.g.f. Sum_{k>=0} exp((3^k - 1)*x) * x^k/k!.

Original entry on oeis.org

1, 1, 5, 37, 521, 12361, 510605, 35837677, 4348414481, 903630399121, 325415100648725, 201805338104622517, 217331913727442676761, 404193405278758441895641, 1306527408146744068362681245, 7302236837745565755664036677757
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp((3^k-1)*x)*x^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(3^k-1)*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (3^k-1)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k/(1 - (3^k - 1)*x)^(k+1).
a(n) = Sum_{k=0..n} (3^k - 1)^(n-k) * binomial(n,k).

A360934 Expansion of e.g.f. Sum_{k>=0} exp((4^k - 1)*x) * x^k/k!.

Original entry on oeis.org

1, 1, 7, 73, 1711, 75121, 6743287, 1169659513, 412296162271, 284887781497441, 400134611520973927, 1108533158650520901673, 6238465090832886119430031, 69421876683500992783472318161, 1567475216919199483376363835235927
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp((4^k-1)*x)*x^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(4^k-1)*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (4^k-1)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k/(1 - (4^k - 1)*x)^(k+1).
a(n) = Sum_{k=0..n} (4^k - 1)^(n-k) * binomial(n,k).

A360935 Expansion of e.g.f. Sum_{k>=0} exp((k^k - 1)*x) * x^k/k!.

Original entry on oeis.org

1, 1, 1, 10, 159, 8306, 1346855, 801620870, 2064941077199, 20691706495244482, 1137052204448926181679, 255128692791512749880418782, 348784909594653094321340422905383, 2262992285674206001784964011734257207938
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1+x+sum(k=2, N, exp((k^k-1)*x)*x^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k^k-1)*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (k^k-1)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k/(1 - (k^k - 1)*x)^(k+1).
a(n) = Sum_{k=0..n} (k^k - 1)^(n-k) * binomial(n,k).

A135077 E.g.f. A(x) = 1 + Sum_{n>=1} (1/n!)*Product_{k=0..n-1} [exp(2^k*x) - 1].

Original entry on oeis.org

1, 1, 3, 18, 209, 4650, 198933, 16482902, 2663887921, 844592892082, 527562202908045, 651188478953301102, 1591732149339598508105, 7716508793733513473433162, 74274446413528969422741614565
Offset: 0

Views

Author

Paul D. Hanna, Nov 24 2007

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3x^2/2! + 18x^3/3! + 209x^4/4! + 4650x^5/5! +...;
A(x) = 1 + [exp(x)-1] + [exp(x)-1][exp(2x)-1]/2! + [exp(x)-1][exp(2x)-1][exp(4x)-1]/3! + [exp(x)-1][exp(2x)-1][exp(4x)-1][exp(8x)-1]/4! +...
		

Crossrefs

Cf. variants: A001831, A135078.

Programs

  • PARI
    {a(n)=n!*polcoeff(1+sum(j=1,n,(1/j!)*prod(k=0,j-1,1*exp(2^k*x)-1)),n)}

A341471 Number of antisymmetric, antitransitive relations on n labeled nodes.

Original entry on oeis.org

1, 1, 3, 21, 317, 9735, 583907, 66226033, 13837055261
Offset: 0

Views

Author

Peter Kagey, Feb 13 2021

Keywords

Comments

An antisymmetric, antitransitive relation is one where xRy implies "not yRx" and xRy and yRz implies "not xRz". All antitransitive relations are irreflexive, so this sequence is counting "anti-equivalence relations".
a(n) < A047656(n).
Idea thanks to Richard Arratia, who saw, verbatim in an editorial, "False equivalences? There were almost too many to count."

Examples

			There are a(3) = 21 antisymmetric, antitransitive relations on n = 3 letters:
  - the empty relation,
  - all six relations containing only a single pair (x,y) (with x != y),
  - all twelve relations {(x1,y1), (x2,y2)} containing exactly two ordered pairs, neither of which is (y1,x1) or (y2,x2), and
  - two relations containing three ordered pairs: {(1,2), (2,3), (3,1)} and {(1,3), (3,2), (2,1)}.
		

Crossrefs

Number of relations on labeled nodes: A000110 (equivalence), A001831 (transitive and antitransitive), A002416 (unrestricted), A006125 (symmetric), A006905 (transitive), A047656 (reflexive and antisymmetric), A083667 (antisymmetric), A341473 (antitransitive).

Extensions

a(6)-a(8) from Bert Dobbelaere, Feb 27 2021

A360718 Number of idempotent Boolean relation matrices on [n] that have no proper power primitive.

Original entry on oeis.org

1, 2, 9, 52, 459, 5526, 91161, 2039024, 62264215, 2618031658, 153147765333, 12544274587956, 1443661355799075, 233590364506712318, 53152637809972391281, 17010099259539378971368, 7660283773351147860024879, 4856904906875123474086041426
Offset: 0

Views

Author

Geoffrey Critzer, Feb 24 2023

Keywords

Comments

A Boolean relation matrix R is said to be convergent in its powers if in the sequence {R, R^2, R^3, ...} there is an m such that R^m = R^(m+1).
An idempotent Boolean relation matrix E is said to have a proper power primitive iff there is a convergent relation R with limit matrix E where R is not equal to E.
Let P = C_1 + C_2 + ... + C_k + S be a poset with rank(P) <= 1 (A001831) where each C_i is a weakly connected component of size 2 or more and S is a set of isolated points. Let A be a subset of [n] and let E = P - {(x, x): x in A}. Then E is an idempotent relation with no proper power primitive iff A satisfies exactly one of the following conditions:
i) A is a nonempty subset of domain(E) and A contains at most one point in domain(C_i) for 1 <= i <= k.
ii) A is a nonempty subset of image(E) and A contains at most one point in image(C_i) for 1 <= i <= k.
iii) A contains at most one point in S.
The first term in the e.g.f. below counts the number of such relations for which condition i) or ii) is satisfied. The second term in the e.g.f. counts the number of such relations for which condition iii) is satisfied. - Geoffrey Critzer, Feb 11 2024

Crossrefs

Programs

  • Mathematica
    nn = 17; A[x_] := Sum[x^n/n! Exp[(2^n - 1) x], {n, 0, nn}]; c[x_] := Log[A[x]] - x; Range[0, nn]! CoefficientList[Series[2 (Exp[x D[c[x], x]/2] - 1) Exp[c[x]] Exp[x] + Exp[c[x]] D[x Exp[x], x], {x, 0, nn}], x]

Formula

E.g.f.: 2(exp(x * c'(x)/2) - 1) exp(c(x)) exp(x) + exp(c(x))*(x exp(x))' where c(x) is the e.g.f. for A002031.
Previous Showing 11-20 of 23 results. Next