A055531
Number of labeled order relations on n nodes in which longest chain has 2 nodes.
Original entry on oeis.org
2, 12, 86, 840, 11642, 227892, 6285806, 243593040, 13262556722, 1014466283292, 109128015915206, 16521353903210520, 3524056001906654762, 1059868947134489801412, 449831067019305308555486, 269568708630308018001547680, 228228540531327778410439620962
Offset: 2
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
A column or diagonal of triangle in
A342587.
A360743
Number of idempotent binary relation matrices E on [n] such that E contains an identity matrix of order n-1 and (E - I_n)^2 = 0.
Original entry on oeis.org
1, 2, 9, 52, 435, 5046, 81501, 1823144, 56572263, 2435930410, 145888123953, 12173595399516, 1418664206897691, 231298954644947294, 52860840028599821445, 16957903154151836822608, 7647128139328190245443279, 4852236755345544324027858258
Offset: 0
-
a:= n-> (n+1)*add(binomial(n, k)*(2^k-1)^(n-k), k=0..n):
seq(a(n), n=0..18); # Alois P. Heinz, Feb 18 2023
-
nn = 16; A[x_] := Sum[x^n/n! Exp[(2^n - 1) x], {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[A[x] + x D[A[x], x], {x, 0, nn}], x]
A122801
Number of labeled bipartite graphs on 2n vertices having equal parts and no isolated vertices.
Original entry on oeis.org
1, 1, 21, 2650, 1452605, 3149738046, 26503552820514, 868081172737564500, 111606080497500509325405, 56762846667123360827351083510, 114847831981827229530824587617895286, 927685362544629192461621864598358779955500, 29976424929810726580224613882836823991388901138994
Offset: 0
-
{ A122801(n) = binomial(2*n-1,n) * sum(k=0, n, binomial(n, k) * (-1)^k * (2^(n-k)-1)^n ); }
A122802
Number of labeled bipartite graphs on n vertices with no isolated vertices.
Original entry on oeis.org
1, 0, 1, 6, 29, 510, 5032, 161406, 3294405, 194342910, 7934652356, 881008805886, 71275547085536, 15178191426486270, 2434250064518832302, 1008694542117649154046, 321680912414994434144165, 262063364967549826752315390, 166681427053102507699172431372
Offset: 0
-
a(n)={sum(k=0, n, binomial(n, k)*(2^k-2)^(n-k)) - if(n%2==0&&n>0, binomial(n-1, n/2)*sum(k=0, n/2, binomial(n/2, k)*(-1)^k*(2^(n/2-k)-1)^(n/2)))} \\ Andrew Howroyd, Nov 07 2019
A360933
Expansion of e.g.f. Sum_{k>=0} exp((3^k - 1)*x) * x^k/k!.
Original entry on oeis.org
1, 1, 5, 37, 521, 12361, 510605, 35837677, 4348414481, 903630399121, 325415100648725, 201805338104622517, 217331913727442676761, 404193405278758441895641, 1306527408146744068362681245, 7302236837745565755664036677757
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp((3^k-1)*x)*x^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(3^k-1)*x)^(k+1)))
-
a(n) = sum(k=0, n, (3^k-1)^(n-k)*binomial(n, k));
A360934
Expansion of e.g.f. Sum_{k>=0} exp((4^k - 1)*x) * x^k/k!.
Original entry on oeis.org
1, 1, 7, 73, 1711, 75121, 6743287, 1169659513, 412296162271, 284887781497441, 400134611520973927, 1108533158650520901673, 6238465090832886119430031, 69421876683500992783472318161, 1567475216919199483376363835235927
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp((4^k-1)*x)*x^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(4^k-1)*x)^(k+1)))
-
a(n) = sum(k=0, n, (4^k-1)^(n-k)*binomial(n, k));
A360935
Expansion of e.g.f. Sum_{k>=0} exp((k^k - 1)*x) * x^k/k!.
Original entry on oeis.org
1, 1, 1, 10, 159, 8306, 1346855, 801620870, 2064941077199, 20691706495244482, 1137052204448926181679, 255128692791512749880418782, 348784909594653094321340422905383, 2262992285674206001784964011734257207938
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1+x+sum(k=2, N, exp((k^k-1)*x)*x^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k^k-1)*x)^(k+1)))
-
a(n) = sum(k=0, n, (k^k-1)^(n-k)*binomial(n, k));
A135077
E.g.f. A(x) = 1 + Sum_{n>=1} (1/n!)*Product_{k=0..n-1} [exp(2^k*x) - 1].
Original entry on oeis.org
1, 1, 3, 18, 209, 4650, 198933, 16482902, 2663887921, 844592892082, 527562202908045, 651188478953301102, 1591732149339598508105, 7716508793733513473433162, 74274446413528969422741614565
Offset: 0
E.g.f.: A(x) = 1 + x + 3x^2/2! + 18x^3/3! + 209x^4/4! + 4650x^5/5! +...;
A(x) = 1 + [exp(x)-1] + [exp(x)-1][exp(2x)-1]/2! + [exp(x)-1][exp(2x)-1][exp(4x)-1]/3! + [exp(x)-1][exp(2x)-1][exp(4x)-1][exp(8x)-1]/4! +...
-
{a(n)=n!*polcoeff(1+sum(j=1,n,(1/j!)*prod(k=0,j-1,1*exp(2^k*x)-1)),n)}
A341471
Number of antisymmetric, antitransitive relations on n labeled nodes.
Original entry on oeis.org
1, 1, 3, 21, 317, 9735, 583907, 66226033, 13837055261
Offset: 0
There are a(3) = 21 antisymmetric, antitransitive relations on n = 3 letters:
- the empty relation,
- all six relations containing only a single pair (x,y) (with x != y),
- all twelve relations {(x1,y1), (x2,y2)} containing exactly two ordered pairs, neither of which is (y1,x1) or (y2,x2), and
- two relations containing three ordered pairs: {(1,2), (2,3), (3,1)} and {(1,3), (3,2), (2,1)}.
A360718
Number of idempotent Boolean relation matrices on [n] that have no proper power primitive.
Original entry on oeis.org
1, 2, 9, 52, 459, 5526, 91161, 2039024, 62264215, 2618031658, 153147765333, 12544274587956, 1443661355799075, 233590364506712318, 53152637809972391281, 17010099259539378971368, 7660283773351147860024879, 4856904906875123474086041426
Offset: 0
-
nn = 17; A[x_] := Sum[x^n/n! Exp[(2^n - 1) x], {n, 0, nn}]; c[x_] := Log[A[x]] - x; Range[0, nn]! CoefficientList[Series[2 (Exp[x D[c[x], x]/2] - 1) Exp[c[x]] Exp[x] + Exp[c[x]] D[x Exp[x], x], {x, 0, nn}], x]
Comments