A261491
a(n) = ceiling(2 + sqrt(8*n-4)).
Original entry on oeis.org
4, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 29
Offset: 1
Start with the 5-cell area that is occupied by 0's and surrounded by stones 1..8. Add those surrounding stones to the area, one by one. At points 1, 2, 4 and 6, the number of surrounding stones is increased; elsewhere, it is not.
Next, do the same with stones A..L. At points A, C, F and I, the number of surrounding stones is increased; elsewhere, it is not.
___D___
__A5C__
_B104E_
G30007J
_F206I_
__H8K__
___L___
A001975
Number of partitions of floor(5n/2) into n nonnegative integers each no more than 5.
Original entry on oeis.org
1, 1, 3, 6, 12, 20, 32, 49, 73, 102, 141, 190, 252, 325, 414, 521, 649, 795, 967, 1165, 1394, 1651, 1944, 2275, 2649, 3061, 3523, 4035, 4604, 5225, 5910, 6660, 7483, 8372, 9343, 10395, 11538, 12764, 14090, 15516, 17053, 18691, 20451, 22330, 24342, 26476, 28754
Offset: 0
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
- Shalosh B. Ekhad, Doron Zeilberger, In How many ways can I carry a total of n coins in my two pockets, and have the same amount in both pockets?, arXiv:1901.08172 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,2,-2,2,-2,0,2,-2,2,-2,2,-1,0,1,-2,1).
-
LinearRecurrence[{2, -1, 0, 1, -2, 2, -2, 2, -2, 0, 2, -2, 2, -2, 2, -1, 0, 1, -2, 1}, {1, 1, 3, 6, 12, 20, 32, 49, 73, 102, 141, 190, 252, 325, 414, 521, 649, 795, 967, 1165}, 50] (* Jean-François Alcover, Feb 26 2020 *)
-
f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)); n=350; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(5*d/2);print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
A220691
Table A(i,j) read by antidiagonals in order A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ..., where A(i,j) is the number of ways in which we can add 2 distinct integers from the range 1..i in such a way that the sum is divisible by j.
Original entry on oeis.org
0, 0, 1, 0, 0, 3, 0, 1, 1, 6, 0, 0, 1, 2, 10, 0, 0, 1, 2, 4, 15, 0, 0, 1, 1, 4, 6, 21, 0, 0, 0, 2, 2, 5, 9, 28, 0, 0, 0, 1, 2, 3, 7, 12, 36, 0, 0, 0, 1, 2, 3, 5, 10, 16, 45, 0, 0, 0, 0, 2, 2, 4, 6, 12, 20, 55, 0, 0, 0, 0, 1, 3, 3, 6, 8, 15, 25, 66, 0, 0, 0, 0
Offset: 1
The upper left corner of this square array starts as:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
6, 2, 2, 1, 2, 1, 1, 0, 0, 0, 0, ...
10, 4, 4, 2, 2, 2, 2, 1, 1, 0, 0, ...
15, 6, 5, 3, 3, 2, 3, 2, 2, 1, 1, ...
Row 1 is all zeros, because it's impossible to choose two distinct integers from range [1]. A(2,1) = 1, as there is only one possibility to choose a pair of distinct numbers from the range [1,2] such that it is divisible by 1, namely 1+2. Also A(2,3) = 1, as 1+2 is divisible by 3.
A(4,1) = 2, as from [1,2,3,4] one can choose two pairs of distinct numbers whose sum is even: {1+3} and {2+4}.
Transpose:
A220692. The lower triangular region of this square array is given by
A061857, which leaves out about half of the nonzero terms.
A220693 is another variant giving 2n-1 terms from the beginning of each row, thus containing all the nonzero terms of this array.
The left column of the table:
A000217. The following cases should be checked: the second column:
A002620, the third column:
A058212 (after the first two terms), the fourth column:
A001971.
-
a[n_, 1] := n*(n-1)/2; a[n_, k_] := Module[{r}, r = Reduce[1 <= i < j <= n && Mod[i + j, k] == 0, {i, j}, Integers]; Which[Head[r] === Or, Length[r], Head[r] === And, 1, r === False, 0, True, Print[r, " not parsed"]]]; Table[a[n-k+1, k], {n, 1, 13} , {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 04 2014 *)
A001979
Number of partitions of floor(7n/2) into n nonnegative integers each no more than 7.
Original entry on oeis.org
1, 1, 4, 10, 24, 49, 94, 169, 289, 468, 734, 1117, 1656, 2385, 3370, 4672, 6375, 8550, 11322, 14800, 19138, 24460, 30982, 38882, 48417, 59779, 73316, 89291, 108108, 130053, 155646, 185258, 219489, 258735, 303748, 355034, 413442, 479500, 554256
Offset: 0
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Springer, T. A., Invariant theory, Lecture Notes in Mathematics, 585, Springer-Verlag, (1977).
- Hilbert, D., Theory of algebraic invariants. Lectures. Cambridge University Press, (1993).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
- Shalosh B. Ekhad, Doron Zeilberger, In How many ways can I carry a total of n coins in my two pockets, and have the same amount in both pockets?, arXiv:1901.08172 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 1, -2, 2, -2, 2, -2, 1, 0, 0, 0, -2, 4, -4, 4, -3, 2, -1, 0, 1, -2, 3, -4, 4, -4, 2, 0, 0, 0, -1, 2, -2, 2, -2, 2, -1, 0, 1, -2, 1).
-
a(n+1) = subs({x=1},convert(series((product('1-x^i','i'=8..7+n)/product('1-x^k','k'=2..n)),x,trunc(7*n/2)+1),polynom)); # Leonid Bedratyuk, Dec 06 2006
-
f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)); n=450; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(7*d/2);print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
A173722
Partial sums of round(n^2/8).
Original entry on oeis.org
0, 0, 1, 2, 4, 7, 12, 18, 26, 36, 49, 64, 82, 103, 128, 156, 188, 224, 265, 310, 360, 415, 476, 542, 614, 692, 777, 868, 966, 1071, 1184, 1304, 1432, 1568, 1713, 1866, 2028, 2199, 2380, 2570, 2770, 2980, 3201, 3432, 3674, 3927, 4192, 4468, 4756, 5056, 5369
Offset: 0
a(5) = round(1/8) + round(4/8) + round(9/8) + round(16/8) + round(25/8) = 0 + 1 + 1 + 2 + 3 = 7.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,1,-3,3,-1).
-
A057077 := proc(n) op( 1+(n mod 4),[1,1,-1,-1]) ; end proc:
A173722 := proc(n) 3*(-1)^n/32+n^2/16+n/12+n^3/24+1/32-A057077(n)/8 ; end proc:
seq(A173722(n),n=0..80) ; # R. J. Mathar, Nov 26 2010
-
Table[Floor[(n + 2)*(2*n^2 - n + 6)/48], {n,0,50}] (* G. C. Greubel, Nov 29 2016 *)
-
a(n)=(n+2)*(2*n^2-n+6)\48 \\ Charles R Greathouse IV, Oct 19 2022
A366443
Number of free polyominoes of site-perimeter n.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 1, 5, 5, 23, 46, 187, 552, 2145, 7818
Offset: 1
a(4) = a(6) = a(7) = 1 as the monomino, domino and L-shaped tromino are the only polyominoes with site perimeter 4, 6 and 7 respectively.
a(5) = 0 as no polyomino has a site-perimeter of 5.
a(8) = 5 as the straight tromino, square tetromino, T-tetromino, S-tetromino and cross pentomino are the only polyominoes with site perimeter 8. See link "Examples".
Cf.
A000105 (free polyominoes),
A001971 (the maximum size of a polyomino with site-perimeter n is given by
A001971(n-2)),
A057730 (perimeter instead of site-perimeter),
A216820 (fixed version of current sequence).
Column sums of
A338211 (without the column for 0-celled polyominoes).
A001980
Number of partitions of floor(7n/2)-1 into n nonnegative integers each no greater than 7.
Original entry on oeis.org
0, 1, 4, 10, 23, 48, 94, 166, 285, 464, 734, 1109, 1646, 2371, 3366, 4652, 6357, 8519, 11309, 14754, 19103, 24399, 30956, 38797, 48355, 59665, 73264, 89145, 108011, 129864, 155554, 185017, 219336, 258438, 303604, 354665, 413213, 479048, 554033
Offset: 0
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 86 terms from Vincenzo Librandi)
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (1, 1, -1, 2, -1, -2, 0, -1, 0, 1, 2, 2, -1, -2, 1, -4, 0, 4, -1, 2, 1, -2, -2, -1, 0, 1, 0, 2, 1, -2, 1, -1, -1, 1).
-
f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)); n=400; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(7*d/2)-1;print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
A243883
Numerator of circle radius r(n) at constant unit length sagitta and chord length = n.
Original entry on oeis.org
5, 1, 13, 5, 29, 5, 53, 17, 85, 13, 125, 37, 173, 25, 229, 65, 293, 41, 365, 101, 445, 61, 533, 145, 629, 85, 733, 197, 845, 113, 965, 257, 1093, 145, 1229, 325, 1373, 181, 1525, 401, 1685, 221, 1853, 485, 2029, 265, 2213, 577, 2405, 313, 2605, 677, 2813, 365, 3029
Offset: 1
A001976
Number of partitions of floor(5n/2)-1 into n nonnegative integers each no more than 5.
Original entry on oeis.org
0, 1, 3, 6, 11, 19, 32, 48, 71, 101, 141, 188, 249, 322, 414, 518, 645, 791, 966, 1160, 1389, 1645, 1943, 2268, 2642, 3053, 3521, 4026, 4596, 5214, 5907, 6648, 7473, 8359, 9339, 10380, 11526, 12747, 14085, 15498, 17039, 18671, 20444, 22308, 24326, 26452, 28746
Offset: 0
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 1, -2, 2, -2, 2, -2, 0, 2, -2, 2, -2, 2, -1, 0, 1, -2, 1).
-
f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)); n=350; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(5*d/2)-1;print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
A001978
Number of partitions of 3n-1 into n nonnegative integers each no more than 6.
Original entry on oeis.org
0, 1, 3, 8, 16, 32, 55, 94, 147, 227, 332, 480, 668, 920, 1232, 1635, 2124, 2738, 3470, 4368, 5424, 6695, 8172, 9922, 11934, 14287, 16968, 20068, 23572, 27584, 32087, 37199, 42901, 49325, 56450, 64424, 73223, 83012, 93764, 105661, 118674, 133003, 148616
Offset: 0
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (1, 3, -2, -4, 1, 3, -1, -1, 3, 1, -4, -2, 3, 1, -1).
-
f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)); n=400; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=3*d-1;print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
Comments