cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A261491 a(n) = ceiling(2 + sqrt(8*n-4)).

Original entry on oeis.org

4, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 29
Offset: 1

Views

Author

Juhani Heino, Aug 21 2015

Keywords

Comments

Conjecture: a(n) = minimal number of stones needed to surround area n in the middle of a Go board (infinite if needed).
The formula was constructed this way: when the area is in a diamond shape with x^2+(x-1)^2 places, it can be surrounded by 4x stones. So, a(1)=4, a(5)=8, a(13)=12 etc.
The positive solution to the quadratic equation 2x^2 - 2x + 1 = n is x = (2 + sqrt(8n-4))/4. And since a(n)=4x, the formula a(n) = 2 + sqrt(8n-4) holds for the positions mentioned. But incredibly also the intermediate results seem to match when the ceiling function is used.
The opposite of this would be an area of 1 X n; it demands the maximal number of stones, a(n) = 2 + 2n.
Equivalently, a(n) is the minimum (cell) perimeter of any polyomino of n cells. - Sean A. Irvine, Oct 17 2020

Examples

			Start with the 5-cell area that is occupied by 0's and surrounded by stones 1..8. Add those surrounding stones to the area, one by one. At points 1, 2, 4 and 6, the number of surrounding stones is increased; elsewhere, it is not.
Next, do the same with stones A..L. At points A, C, F and I, the number of surrounding stones is increased; elsewhere, it is not.
___D___
__A5C__
_B104E_
G30007J
_F206I_
__H8K__
___L___
		

Crossrefs

Cf. A001971.

Programs

Formula

a(n) = ceiling(2 + sqrt(8*n-4)).
For n > 2, a(n) - a(n-1) = 1 if n is of the form 2*(k^2+k+1), 2*k^2 + 1 or (k^2+k)/2 + 1, otherwise 0. - Jianing Song, Aug 10 2021

A001975 Number of partitions of floor(5n/2) into n nonnegative integers each no more than 5.

Original entry on oeis.org

1, 1, 3, 6, 12, 20, 32, 49, 73, 102, 141, 190, 252, 325, 414, 521, 649, 795, 967, 1165, 1394, 1651, 1944, 2275, 2649, 3061, 3523, 4035, 4604, 5225, 5910, 6660, 7483, 8372, 9343, 10395, 11538, 12764, 14090, 15516, 17053, 18691, 20451, 22330, 24342, 26476, 28754
Offset: 0

Views

Author

Keywords

Comments

In Cayley's terminology, this is the number of literal terms of degree n and of weight floor(5n/2) involving the letters a, b, c, d, e, f, having weights 0, 1, 2, 3, 4, 5 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

References

  • A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 0, 1, -2, 2, -2, 2, -2, 0, 2, -2, 2, -2, 2, -1, 0, 1, -2, 1}, {1, 1, 3, 6, 12, 20, 32, 49, 73, 102, 141, 190, 252, 325, 414, 521, 649, 795, 967, 1165}, 50] (* Jean-François Alcover, Feb 26 2020 *)
  • PARI
    f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)); n=350; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(5*d/2);print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

Formula

Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)), where w=floor(5n/2). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
G.f.: -(x^14 -x^13 +2*x^12 +x^11 +2*x^10 +3*x^9 +x^8 +5*x^7 +x^6 +3*x^5 +2*x^4 +x^3 +2*x^2 -x+1) / ((x^4+1) *(x^2+x+1) *(x^2-x+1) *(x^2+1)^2 *(x+1)^3 *(x-1)^5). - Alois P. Heinz, Jul 25 2015

Extensions

Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

A220691 Table A(i,j) read by antidiagonals in order A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ..., where A(i,j) is the number of ways in which we can add 2 distinct integers from the range 1..i in such a way that the sum is divisible by j.

Original entry on oeis.org

0, 0, 1, 0, 0, 3, 0, 1, 1, 6, 0, 0, 1, 2, 10, 0, 0, 1, 2, 4, 15, 0, 0, 1, 1, 4, 6, 21, 0, 0, 0, 2, 2, 5, 9, 28, 0, 0, 0, 1, 2, 3, 7, 12, 36, 0, 0, 0, 1, 2, 3, 5, 10, 16, 45, 0, 0, 0, 0, 2, 2, 4, 6, 12, 20, 55, 0, 0, 0, 0, 1, 3, 3, 6, 8, 15, 25, 66, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2013

Keywords

Examples

			The upper left corner of this square array starts as:
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
   1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
   3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
   6, 2, 2, 1, 2, 1, 1, 0, 0, 0, 0, ...
  10, 4, 4, 2, 2, 2, 2, 1, 1, 0, 0, ...
  15, 6, 5, 3, 3, 2, 3, 2, 2, 1, 1, ...
Row 1 is all zeros, because it's impossible to choose two distinct integers from range [1]. A(2,1) = 1, as there is only one possibility to choose a pair of distinct numbers from the range [1,2] such that it is divisible by 1, namely 1+2. Also A(2,3) = 1, as 1+2 is divisible by 3.
A(4,1) = 2, as from [1,2,3,4] one can choose two pairs of distinct numbers whose sum is even: {1+3} and {2+4}.
		

Crossrefs

Transpose: A220692. The lower triangular region of this square array is given by A061857, which leaves out about half of the nonzero terms. A220693 is another variant giving 2n-1 terms from the beginning of each row, thus containing all the nonzero terms of this array.
The left column of the table: A000217. The following cases should be checked: the second column: A002620, the third column: A058212 (after the first two terms), the fourth column: A001971.

Programs

  • Mathematica
    a[n_, 1] := n*(n-1)/2; a[n_, k_] := Module[{r}, r = Reduce[1 <= i < j <= n && Mod[i + j, k] == 0, {i, j}, Integers]; Which[Head[r] === Or, Length[r], Head[r] === And, 1, r === False, 0, True, Print[r, " not parsed"]]]; Table[a[n-k+1, k], {n, 1, 13} , {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 04 2014 *)

Formula

See Robert Israel's formula at A061857.

A001979 Number of partitions of floor(7n/2) into n nonnegative integers each no more than 7.

Original entry on oeis.org

1, 1, 4, 10, 24, 49, 94, 169, 289, 468, 734, 1117, 1656, 2385, 3370, 4672, 6375, 8550, 11322, 14800, 19138, 24460, 30982, 38882, 48417, 59779, 73316, 89291, 108108, 130053, 155646, 185258, 219489, 258735, 303748, 355034, 413442, 479500, 554256
Offset: 0

Views

Author

Keywords

Comments

Also, the dimension of the vector space of homogeneous covariants of degree n for the binary form of degree 7. To calculate the dimension one uses the Sylvester-Cayley formula. - Leonid Bedratyuk, Dec 06 2006
In Cayley's terminology, this is the number of literal terms of degree n and of weight floor(7n/2) involving the letters a, b, c, d, e, f, g, h, having weights 0, 1, 2, 3, 4, 5, 6, 7 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

References

  • A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Springer, T. A., Invariant theory, Lecture Notes in Mathematics, 585, Springer-Verlag, (1977).
  • Hilbert, D., Theory of algebraic invariants. Lectures. Cambridge University Press, (1993).

Crossrefs

Cf. A001980.

Programs

  • Maple
    a(n+1) = subs({x=1},convert(series((product('1-x^i','i'=8..7+n)/product('1-x^k','k'=2..n)),x,trunc(7*n/2)+1),polynom)); # Leonid Bedratyuk, Dec 06 2006
  • PARI
    f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)); n=450; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(7*d/2);print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

Formula

Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)(1-x^7z)), where w=floor(7n/2). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
G.f.: -(x^34 -x^33 +3*x^32 +3*x^31 +7*x^30 +12*x^29 +16*x^28 +28*x^27 +33*x^26 +46*x^25 +56*x^24 +73*x^23 +83*x^22 +90*x^21 +106*x^20 +109*x^19 +121*x^18 +110*x^17 +121*x^16 +109*x^15 +106*x^14 +90*x^13 +83*x^12 +73*x^11 +56*x^10 +46*x^9 +33*x^8 +28*x^7 +16*x^6 +12*x^5 +7*x^4 +3*x^3 +3*x^2 -x+1) / ((x^4-x^2+1) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) *(x^4+1) *(x^2+x+1)^2 *(x^2-x+1)^2 *(x^2+1)^3 *(x+1)^5 *(x-1)^7). - Alois P. Heinz, Jul 25 2015

Extensions

Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

A173722 Partial sums of round(n^2/8).

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 12, 18, 26, 36, 49, 64, 82, 103, 128, 156, 188, 224, 265, 310, 360, 415, 476, 542, 614, 692, 777, 868, 966, 1071, 1184, 1304, 1432, 1568, 1713, 1866, 2028, 2199, 2380, 2570, 2770, 2980, 3201, 3432, 3674, 3927, 4192, 4468, 4756, 5056, 5369
Offset: 0

Views

Author

Mircea Merca, Nov 26 2010

Keywords

Comments

Partial sums of A001971.

Examples

			a(5) = round(1/8) + round(4/8) + round(9/8) + round(16/8) + round(25/8) = 0 + 1 + 1 + 2 + 3 = 7.
		

Crossrefs

Cf. A001971.

Programs

Formula

a(n) = Sum_{k=0..n} round(k^2/8).
a(n) = round((2*n^3+3*n^2+4*n)/48).
a(n) = round((2*n+1)*(2*n^2+2*n+3)/96).
a(n) = floor((n+2)*(2*n^2-n+6)/48).
a(n) = ceiling((2*n^3+3*n^2+4*n-9)/48).
a(n) = a(n-4)+n*(n-3)/2+2, n>3.
G.f.: x^2*(1-x+x^2) / ( (1+x)*(x^2+1)*(x-1)^4 ). - R. J. Mathar, Nov 26 2010
a(n) = 3*(-1)^n/32+n^2/16+n/12+n^3/24+1/32-A057077(n)/8. - R. J. Mathar, Nov 26 2010

A366443 Number of free polyominoes of site-perimeter n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 5, 5, 23, 46, 187, 552, 2145, 7818
Offset: 1

Views

Author

John Mason from an idea of Allan C. Wechsler, Oct 10 2023

Keywords

Comments

This sequence counts free connected (via common edges) polyominoes with given site-perimeter. The site-perimeter of a polyomino is the number of cells that are adjacent to it (via common edges). This sequence allows holes of any kind.

Examples

			a(4) = a(6) = a(7) = 1 as the monomino, domino and L-shaped tromino are the only polyominoes with site perimeter 4, 6 and 7 respectively.
a(5) = 0 as no polyomino has a site-perimeter of 5.
a(8) = 5 as the straight tromino, square tetromino, T-tetromino, S-tetromino and cross pentomino are the only polyominoes with site perimeter 8. See link "Examples".
		

Crossrefs

Cf. A000105 (free polyominoes), A001971 (the maximum size of a polyomino with site-perimeter n is given by A001971(n-2)), A057730 (perimeter instead of site-perimeter), A216820 (fixed version of current sequence).
Column sums of A338211 (without the column for 0-celled polyominoes).

Extensions

a(15) corrected by Sean A. Irvine, Apr 13 2025

A001980 Number of partitions of floor(7n/2)-1 into n nonnegative integers each no greater than 7.

Original entry on oeis.org

0, 1, 4, 10, 23, 48, 94, 166, 285, 464, 734, 1109, 1646, 2371, 3366, 4652, 6357, 8519, 11309, 14754, 19103, 24399, 30956, 38797, 48355, 59665, 73264, 89145, 108011, 129864, 155554, 185017, 219336, 258438, 303604, 354665, 413213, 479048, 554033
Offset: 0

Views

Author

Keywords

Comments

In Cayley's terminology, this is the number of literal terms of degree n and of weight floor(7n/2)-1 involving the letters a, b, c, d, e, f, g, h, having weights 0, 1, 2, 3, 4, 5, 6, 7 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

References

  • A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001979.

Programs

  • PARI
    f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)); n=400; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(7*d/2)-1;print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

Formula

Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)(1-x^7z)), where w=floor(7n/2)-1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
G.f.: -(x^24 +3*x^23 +5*x^22 +10*x^21 +17*x^20 +26*x^19 +33*x^18 +45*x^17 +55*x^16 +61*x^15 +63*x^14 +68*x^13 +67*x^12 +68*x^11 +63*x^10 +61*x^9 +55*x^8 +45*x^7 +33*x^6 +26*x^5 +17*x^4 +10*x^3 +5*x^2 +3*x +1)*x / ((x^4+x^3+x^2+x+1) *(x^4-x^2+1) *(x^2+x+1)^2 *(x^2-x +1)^2 *(x^2+1)^3 *(x+1)^5 *(x-1)^7). - Alois P. Heinz, Jul 25 2015

Extensions

Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
a(0)=0 inserted by Alois P. Heinz, Jul 25 2015

A243883 Numerator of circle radius r(n) at constant unit length sagitta and chord length = n.

Original entry on oeis.org

5, 1, 13, 5, 29, 5, 53, 17, 85, 13, 125, 37, 173, 25, 229, 65, 293, 41, 365, 101, 445, 61, 533, 145, 629, 85, 733, 197, 845, 113, 965, 257, 1093, 145, 1229, 325, 1373, 181, 1525, 401, 1685, 221, 1853, 485, 2029, 265, 2213, 577, 2405, 313, 2605, 677, 2813, 365, 3029
Offset: 1

Views

Author

Kival Ngaokrajang, Jun 13 2014

Keywords

Comments

Denominator of circle radius r(n) is A143025(n+2). The integral radius appearing at n = 2, 6, 10, 14, ..., = 1, 5, 13, 25, ..., respectively which is A001844(n/4 - 1/2). Floor (r(n)) = A001971(n). For the case of sagitta = n and chord length = 1, the numerator and the denominator will be A053755(n) and A008590(n) respectively. See illustration in links.

Crossrefs

Programs

  • PARI
    a(n) = numerator(n^2/8+1/2);

Formula

a(n) = numerator(n^2/8 + 1/2).
Empirical g.f.: -x*(x^11 +5*x^10 +x^9 +13*x^8 +2*x^7 +14*x^6 +2*x^5 +14*x^4 +5*x^3 +13*x^2 +x +5) / ((x -1)^3*(x +1)^3*(x^2 +1)^3). - Colin Barker, Jan 17 2015

A001976 Number of partitions of floor(5n/2)-1 into n nonnegative integers each no more than 5.

Original entry on oeis.org

0, 1, 3, 6, 11, 19, 32, 48, 71, 101, 141, 188, 249, 322, 414, 518, 645, 791, 966, 1160, 1389, 1645, 1943, 2268, 2642, 3053, 3521, 4026, 4596, 5214, 5907, 6648, 7473, 8359, 9339, 10380, 11526, 12747, 14085, 15498, 17039, 18671, 20444, 22308, 24326, 26452, 28746
Offset: 0

Views

Author

Keywords

Comments

In Cayley's terminology, this is the number of literal terms of degree n and of weight floor(5n/2)-1 involving the letters a, b, c, d, e, f, having weights 0, 1, 2, 3, 4, 5 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

References

  • A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001975.

Programs

  • PARI
    f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)); n=350; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(5*d/2)-1;print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

Formula

Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)), where w=floor(5n/2)-1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
G.f.: -(x^12 +x^11 +x^10 +2*x^9 +2*x^8 +4*x^7 +x^6 +4*x^5 +2*x^4 +2*x^3 +x^2 +x+1)*x / ((x^4+1) *(x^2+x+1) *(x^2-x+1) *(x^2+1)^2 *(x+1)^3 *(x-1)^5). - Alois P. Heinz, Jul 25 2015

Extensions

Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
a(0)=0 inserted by Alois P. Heinz, Jul 25 2015

A001978 Number of partitions of 3n-1 into n nonnegative integers each no more than 6.

Original entry on oeis.org

0, 1, 3, 8, 16, 32, 55, 94, 147, 227, 332, 480, 668, 920, 1232, 1635, 2124, 2738, 3470, 4368, 5424, 6695, 8172, 9922, 11934, 14287, 16968, 20068, 23572, 27584, 32087, 37199, 42901, 49325, 56450, 64424, 73223, 83012, 93764, 105661, 118674, 133003, 148616
Offset: 0

Views

Author

Keywords

Comments

In Cayley's terminology, this is the number of literal terms of degree n and of weight 3n-1 involving the letters a, b, c, d, e, f, g, having weights 0, 1, 2, 3, 4, 5, 6 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

References

  • A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001977.

Programs

  • PARI
    f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)); n=400; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=3*d-1;print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

Formula

Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)), where w=3n-1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
G.f.: (x^6 +2*x^5 +2*x^4 +x^3 +2*x^2 +2*x+1)*x / ((x^2+x+1) *(x^4+x^3+x^2+x+1) *(x+1)^3 *(x-1)^6). - Alois P. Heinz, Jul 25 2015

Extensions

Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
a(0)=0 inserted by Alois P. Heinz, Jul 25 2015
Previous Showing 11-20 of 22 results. Next