A378551
a(n) = Sum_{k=0..n} 4^k * binomial(n/2+k-1,k) * binomial(n-1,n-k).
Original entry on oeis.org
1, 2, 20, 206, 2200, 24062, 267500, 3009050, 34150000, 390265190, 4484762500, 51771831146, 599921125000, 6974108163778, 81297715937500, 949957147566086, 11123368187500000, 130487420114543110, 1533247106445312500, 18042303960492212810, 212590835968046875000
Offset: 0
-
a[n_]:=SeriesCoefficient[ 1/(1 - 4*x/(1-x))^(n/2),{x,0,n}]; Array[a,21,0] (* Stefano Spezia, Nov 30 2024 *)
-
a(n) = sum(k=0, n, 4^k*binomial(n/2+k-1, k)*binomial(n-1, n-k));
A378552
a(n) = Sum_{k=0..n} 9^k * binomial(n/3+k-1,k) * binomial(n-1,n-k).
Original entry on oeis.org
1, 3, 51, 900, 16455, 307833, 5850000, 112445112, 2180050215, 42552000000, 835075676361, 16461248223588, 325696500000000, 6464447754891285, 128654307202482420, 2566472490000000000, 51302899404879842343, 1027391467409893403745, 20607804108000000000000
Offset: 0
-
a[n_]:=SeriesCoefficient[1/(1 - 9*x/(1-x))^(n/3),{x,0,n}]; Array[a,19,0] (* Stefano Spezia, Nov 30 2024 *)
-
a(n) = sum(k=0, n, 9^k*binomial(n/3+k-1, k)*binomial(n-1, n-k));
A378565
a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(n+k-1,n-k).
Original entry on oeis.org
1, 1, 7, 43, 271, 1746, 11425, 75615, 504799, 3392953, 22930282, 155664356, 1060710457, 7250779238, 49700101101, 341474150583, 2351032782783, 16216401440106, 112035931072915, 775163096510445, 5370301986029066, 37249469056575504, 258648802856972348
Offset: 0
-
Table[Sum[Binomial[n+k-1, k] * Binomial[n+k-1, 2*k-1], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Dec 01 2024 *)
-
a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(n+k-1, n-k));
A378566
a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(n+2*k-1,n-k).
Original entry on oeis.org
1, 1, 9, 64, 465, 3456, 26082, 199060, 1532313, 11875015, 92528414, 724187982, 5689127886, 44834549501, 354289977750, 2806262293824, 22273793685609, 177113634045858, 1410633764438967, 11251419724586850, 89860413370562730, 718528004169570925
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(n+2*k-1, n-k));
A378611
a(n) = Sum_{k=0..n} binomial(2*n+k-1,k) * binomial(n-1,n-k).
Original entry on oeis.org
1, 2, 14, 104, 806, 6412, 51908, 425476, 3520070, 29332940, 245841284, 2070093632, 17499188924, 148414157816, 1262280506144, 10762045739644, 91951462167110, 787113739061260, 6749009521216052, 57954807274992208, 498334047795436276, 4290199618047230824
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+k-1, k)*binomial(n-1, n-k));
A341266
a(n) is the n-th term of the n-fold self-convolution of the twice left-shifted tribonacci sequence (A000073).
Original entry on oeis.org
1, 1, 5, 25, 125, 646, 3395, 18054, 96885, 523600, 2845700, 15537457, 85160387, 468279280, 2582140370, 14272523740, 79056303957, 438711518556, 2438587839980, 13574970187300, 75668677723100, 422294150816010, 2359326605275755, 13194525668986350, 73857744668632275
Offset: 0
-
a:= n-> coeff(series((1/(1-x-x^2-x^3))^n, x, n+1), x, n):
seq(a(n), n=0..25);
# second Maple program:
g:= proc(n) g(n):= `if`(n<2, (n+1)*(2-n)/2, add(g(n-j), j=1..3)) end:
b:= proc(n, k) option remember; `if`(k<2, g(n),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
A378462
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1,k) * binomial(2*n+k-1,n-2*k).
Original entry on oeis.org
1, 1, 5, 28, 157, 891, 5126, 29814, 174869, 1032481, 6128795, 36541220, 218672950, 1312712519, 7901609196, 47673716238, 288226881669, 1745734656930, 10590673033931, 64342403492274, 391414638274987, 2383907483199039, 14534764399148966, 88705912126094358
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n+k-1, k)*binomial(2*n+k-1, n-2*k));
A272865
Triangle read by rows, T(n,k) are covariances of inverse power traces of complex Wishart matrices with parameter c=2, for n>=1 and 1<=k<=n.
Original entry on oeis.org
4, 24, 160, 132, 936, 5700, 720, 5312, 33264, 198144, 3940, 29880, 190980, 1155600, 6823620, 21672, 167712, 1088856, 6670656, 39786120, 233908896, 119812, 941640, 6189540, 38300976, 230340740, 1363667256, 7997325700
Offset: 1
Triangle starts:
4;
24, 160;
132, 936, 5700;
720, 5312, 33264, 198144;
3940, 29880, 190980, 1155600, 6823620;
- F. D. Cunden, "Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities", Phys. Rev. E 91, 060102(R) (2015).
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, "Correlators for the Wigner-Smith time-delay matrix of chaotic cavities", J. Phys. A: Math. Theor. 49, 18LT01 (2016).
- F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, "Moments of Random Matrices and Hypergeometric Orthogonal Polynomials", Commun. Math. Phys. 369, 1091-1145 (2019).
- F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities, arXiv:1412.2172 [cond-mat.mes-hall], 2014-2015.
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Correlators for the Wigner-Smith time-delay matrix of chaotic cavities, arXiv:1601.06690 [math-ph], 2016.
- F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, Moments of Random Matrices and Hypergeometric Orthogonal Polynomials, arXiv:1805.08760 [math-ph], 2018.
-
P := (n,k) -> simplify(n*hypergeom([1-k,k+1],[1],-1)*hypergeom([1-n,n+1],[2],-1)): seq(seq(4*(n*k)*(P(n,k)+P(k,n))/(n+k),k=1..n),n=1..7); # Peter Luschny, May 08 2016
-
Clear["Global`*"];(*Wigner-Smith Covariance*)
P[k_] := Sum[Binomial[k - 1, j] Binomial[k + j, j], {j, 0, k - 1}]
Q[k_] := Sum[Binomial[k, j + 1] Binomial[k + j, j], {j, 0, k - 1}]
a[k1_, k2_] := 4 (k1 k2)/(k1 + k2) (P[k1] Q[k2] + P[k2] Q[k1])
L = 10; Table[a[k, l], {k, 1, L}, {l, 1, k}]
A350519
a(n) = A(n,n) where A(1,n) = A(n,1) = prime(n+1) and A(m,n) = A(m-1,n) + A(m,n-1) + A(m-1,n-1) for m > 1 and n > 1.
Original entry on oeis.org
3, 13, 63, 325, 1719, 9237, 50199, 275149, 1518263, 8422961, 46935819, 262512929, 1472854451, 8285893713, 46723439019, 264009961733, 1494486641911, 8473508472009, 48112827862527, 273541139290857, 1557023508876891, 8872219429659729, 50605041681538595, 288897992799897481
Offset: 1
The two-dimensional recurrence A(m,n) can be depicted in matrix form as
3 5 7 11 13 17 19 ...
5 13 25 43 67 97 133 ...
7 25 63 131 241 405 635 ...
11 43 131 325 697 1343 2383 ...
13 67 241 697 1719 3759 7485 ...
17 97 405 1343 3759 9237 20481 ...
19 133 635 2383 7485 20481 50199 ...
...
and then a(n) is the main diagonal of this matrix, A(n,n).
-
clear all
close all
sz = 14
f = zeros(sz,sz);
pp = primes(50);
f(1,:) = pp(2:end);
f(:,1) = pp(2:end);
for m=2:sz
for n=2:sz
f(m,n) = f(m-1,n-1)+f(m,n-1)+f(m-1,n);
end
end
an = []
for n=1:sz
an = [an f(n,n)];
end
S = sprintf('%i,',an);
S = S(1:end-1)
-
f[1,1]=3;f[m_,1]:=Prime[m+1];f[1,n_]:=Prime[n+1];f[m_,n_]:=f[m,n]=f[m-1,n]+f[m,n-1]+f[m-1,n-1];Table[f[n,n],{n,25}] (* Giorgos Kalogeropoulos, Jan 03 2022 *)
Comments