cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 79 results. Next

A161468 Fibonacci numbers that are more abundant than any smaller Fibonacci number.

Original entry on oeis.org

1, 2, 3, 5, 8, 21, 34, 55, 89, 144, 377, 610, 987, 1597, 2584, 6765, 10946, 17711, 28657, 46368, 196418, 317811, 514229, 832040, 2178309, 3524578, 5702887, 9227465, 14930352, 63245986, 102334155, 267914296, 701408733, 1134903170, 2971215073
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};k=0;Do[p=Plus@@Divisors[f=Fibonacci[n]];If[p>k,AppendTo[lst,f];k=p],{n,5!}];lst

Extensions

Name corrected by T. D. Noe, Jul 06 2010

A172516 Least number k such that sigma(k) >= 2^n.

Original entry on oeis.org

2, 3, 6, 10, 18, 30, 60, 108, 180, 360, 720, 1260, 2520, 5040, 9240, 17640, 35280, 65520, 131040, 257040, 498960, 982800, 1884960, 3603600, 7207200, 14414400, 28274400, 56548800, 110270160, 220540320, 428828400, 845404560, 1690809120
Offset: 1

Views

Author

T. D. Noe, Feb 05 2010

Keywords

Comments

For n-bit arithmetic, m=a(n)-1 is the largest number for which sigma(m) can be computed without overflow. This is a subsequence of the highly abundant numbers, A002093, which is very useful for computing this sequence. a(63) is 1454751268447276800.

Crossrefs

A141847 (least number k such that sigma2(k) >= 2^n)

Programs

  • Mathematica
    k=1; Table[While[DivisorSigma[1,k]<2^n, k++ ]; k, {n,20}]

Formula

a(n) <= 2 * a(n-1)

A192929 Least highly abundant number with n distinct prime factors.

Original entry on oeis.org

1, 2, 6, 30, 210, 4620, 120120, 4084080, 116396280, 2677114440, 310545275040, 14440355289360, 1068586291412640, 114873026326858800, 9419588158802421600, 442720643463713815200, 54011918502573085454400, 8587895041909120587249600
Offset: 0

Views

Author

Enrique Pérez Herrero, Jul 12 2011

Keywords

Comments

a(n) is the least number in sequence A002093, with A001221(a(n)) = n.

References

  • S. S. Pillai, Highly abundant numbers, Bull. Calcutta Math. Soc., 35, (1943), 141-156.

Crossrefs

A225194 Largest highly abundant number with n distinct prime factors.

Original entry on oeis.org

1, 16, 288, 7200, 604800, 46569600, 1816214400, 92626934400, 5573053886400, 445257673660800, 11738611396512000, 1734575477357923200, 98737373326527936000, 8491414106081402496000, 1697221394453020323888000, 372257225850029124372768000
Offset: 1

Views

Author

Enrique Pérez Herrero, May 01 2013

Keywords

Comments

a(n) is the largest number in sequence A002093, with A001221(a(n)) = n.

References

  • Pillai, S. S., Highly abundant numbers, Bull. Calcutta Math. Soc., 35, (1943), 141-156

Crossrefs

A240073 Deficient numbers k for which sigma(k), the sum of divisors of k, reaches a new maximum.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 10, 14, 16, 21, 22, 26, 32, 44, 50, 52, 63, 64, 76, 92, 98, 105, 110, 124, 128, 136, 152, 170, 182, 184, 212, 225, 230, 232, 248, 256, 290, 296, 310, 315, 328, 344, 370, 376, 405, 410, 424, 470, 472, 484, 495, 512, 568, 584, 592, 632, 656
Offset: 1

Views

Author

T. D. Noe, Apr 08 2014

Keywords

Comments

Every power of 2 appears. The deficient number k has sigma(k) < 2*k. In relation to the highly abundant numbers, these numbers might be termed highly deficient numbers.

Crossrefs

Cf. A002093 (highly abundant numbers), A005100 (deficient numbers).
Cf. A228450 (deficient numbers with increasing abundancy).

Programs

  • Mathematica
    t = {}; mn = 0; n = 0; While[Length[t] < 100, n++; d = DivisorSigma[1, n]; If[mn < d < 2*n, AppendTo[t, n]; mn = d]]; t
  • PARI
    lista(kmax) = {my(sigmax = 0, sig); for(k = 1, kmax, sig = sigma(k); if(sig < 2*k && sig > sigmax, sigmax = sig; print1(k, ", ")));} \\ Amiram Eldar, Apr 06 2024

A243915 a(n) = sigma(omega(n)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 4, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 1, 4, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 4, 1, 3, 3, 1, 3, 4, 1, 3, 3, 4, 1, 3, 1, 3, 3, 3, 3, 4, 1, 3, 1, 3, 1, 4, 3, 3, 3
Offset: 2

Views

Author

Wesley Ivan Hurt, Jun 14 2014

Keywords

Comments

If n is the product of k distinct primes, then a(n) = sigma(k).
Records occur at n = 2, 6, 30, 210, 30030, ... . - R. J. Mathar, Jun 18 2014 [The position of the n-th record is A002110(A002093(n)). - Amiram Eldar, Dec 29 2024]
If n = p^k where p is prime and k is a positive integer, a(p^k) = sigma(omega(p^k)) = sigma(1) = 1. - Wesley Ivan Hurt, May 21 2021

Crossrefs

Cf. A000203 (sigma), A001221 (omega), A002110, A002093.

Programs

  • Maple
    with(numtheory):
    A243915 := proc(n)
        sigma(nops(factorset(n))) ;
    end proc:
    seq(A243915(n), n=2..100); # R. J. Mathar, Jun 18 2014
  • Mathematica
    Table[DivisorSigma[1, PrimeNu[n]], {n, 2, 100}]
  • PARI
    for(n=2,50, print1(sigma(omega(n)), ", ")) \\ G. C. Greubel, May 17 2017

Formula

a(n) = A000203(A001221(n)).

A244043 Numbers n for new peaks of floor(sigma(n)/primepi(n)).

Original entry on oeis.org

2, 6, 12, 24, 30, 36, 60, 96, 120, 180, 240, 360, 600, 720, 840, 1080, 1260, 1680, 2520, 5040, 7560, 10080, 12600, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 138600, 166320, 196560, 221760, 277200
Offset: 1

Views

Author

Bill McEachen, Jun 17 2014

Keywords

Comments

sigma(n) = A000203(n), primepi(n) = A000720(n).
The sequence entries frequently are members of A002182 (highly composite numbers). Similar sequences can be generated by varying the "k" seen in the PARI code, for example to k=2.
Subsequence of A002093 (highly abundant numbers). - Jens Kruse Andersen, Jul 15 2014

Examples

			Example at n=2 (start), sigma(2)=3, primepi(2)=1 so the initial peak is 3.
We see a new peak (4) at n=6 from floor(12/3), a(2)=6.
We see new peak (5) at n=12 from floor(28/5), a(3)=12. No entry is defined for n<2.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[peak = 0; n = 2, n < 10^5, n++, f = Floor[DivisorSigma[1, n] / PrimePi[n]]; If[f > peak, peak = f; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 12 2018 *)
    DeleteDuplicates[Table[{n,Floor[DivisorSigma[1,n]/PrimePi[n]]},{n,2,85000}],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Mar 13 2025 *)
  • PARI
    genit={my(maxx=100000);peak=3;k=1;n=3;optr=2;sptr=1;
    write("A244043.csv",sptr," , ",2);while(npeak,sptr++;peak=c;
    write("A244043.csv",sptr," , ",optr););n++);}

Formula

Define A(n) = floor(A000203(n)/A000720(n)) for n >= 2. Then a(1) = 2 and for n >= 2 a(n) is the least k > a(n-1) such that A(k) > A(a(n-1)). - Wolfdieter Lang, Jul 03 2014

Extensions

Edited. Crossrefs for sigma and primepi added. - Wolfdieter Lang, Jul 03 2014
More terms from Harvey P. Dale, Mar 13 2025

A253248 Number of k <= n with A000203(k) <= A000203(n).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 6, 8, 8, 10, 8, 12, 10, 13, 14, 16, 13, 18, 14, 20, 19, 20, 17, 24, 20, 25, 24, 27, 19, 30, 23, 31, 29, 30, 30, 36, 25, 35, 34, 39, 30, 42, 31, 41, 41, 41, 34, 48, 38, 48, 44, 51, 36, 53, 46, 55, 48, 51, 42, 60, 43, 57, 59, 63, 52
Offset: 1

Views

Author

Robert Israel, Jun 04 2015

Keywords

Examples

			A000203(7) = 8 >= A000203(k) for k = 1,2,3,4,5,7, so a(7) = 6.
		

Crossrefs

Programs

  • Maple
    N:= 1000:
    B:= map(numtheory:-sigma,[$1..N]):
    M:= max(B):
    X:= Vector(M):
    for n from 1 to N do
      b:= B[n];
      X[b..-1]:= X[b..-1] + <(1$(M-b+1))>;
      A[n]:= X[b];
    od:
    seq(A[n],n=1..N);
  • Mathematica
    f[v_] := Count[v, ?(# <= v[[-1]] &)]; seq[lim] := Module[{v = DivisorSigma[1, Range[lim]]}, f[v[[1 ;; #]]] & /@ Range[Length[v]]]; seq[65] (* Amiram Eldar, Dec 19 2024 *)

Formula

a(n) <= n, with equality if and only if n is in A002093.
Empirically it appears that lim inf_(n -> infinity) a(n)/n = 2/3, with minimum value a(29)/29 = 19/29.

A290490 Numbers k such that (sum of proper unitary divisors of k) > (sum of proper unitary divisors of m) for all m < k.

Original entry on oeis.org

1, 2, 6, 10, 14, 18, 22, 26, 30, 42, 60, 66, 78, 102, 114, 138, 150, 174, 186, 210, 330, 390, 462, 510, 546, 570, 690, 798, 858, 870, 930, 1050, 1110, 1218, 1230, 1290, 1410, 1470, 1590, 1722, 1770, 1830, 2010, 2130, 2190, 2310, 2730, 3570, 3990, 4290, 4830, 5610, 6006, 6090, 6510, 7410, 7590, 7770
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 03 2017

Keywords

Comments

Numbers k such that A034460(k) > A034460(m) for all m < k.

Crossrefs

Programs

  • Mathematica
    mx = -1; t = {}; Do[u = DivisorSum[n, # &, GCD[#, n/#] == 1 &] - n; If[u > mx, mx = u; AppendTo[t, n]], {n, 8000}]; t
  • PARI
    sumud(n) = sumdiv(n, d, if (gcd(d, n/d)==1, d)) - n;
    lista(nn) = {lasts = -1; for (n=1, nn, if ((news = sumud(n)) > lasts, print1(n, ", "); lasts = news););} \\ Michel Marcus, Aug 04 2017

A309943 Numbers k such that k * d(k) > j * d(j) for all j < k, where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 210, 216, 240, 288, 300, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1008, 1080, 1200, 1260, 1440, 1680, 1980, 2016, 2100, 2160, 2520, 3120
Offset: 1

Views

Author

Amiram Eldar, Aug 24 2019

Keywords

Comments

Differs from A002093 for n >= 41.
Nicolas asks if there are infinitely many terms of this sequence that are not largely composite (A067128).

Crossrefs

Programs

  • Mathematica
    s = {}; dm = 0; Do[d1 = n * DivisorSigma[0, n]; If[d1 > dm, dm = d1; AppendTo[s, n]], {n, 1, 10^4}]; s
Previous Showing 61-70 of 79 results. Next