cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A258406 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^2 dx.

Original entry on oeis.org

2, 5, 3, 8, 7, 4, 0, 8, 2, 3, 7, 8, 2, 7, 6, 0, 0, 2, 9, 8, 8, 5, 0, 8, 8, 9, 3, 8, 1, 6, 3, 3, 2, 9, 1, 2, 3, 8, 4, 7, 6, 3, 6, 3, 4, 3, 1, 9, 3, 3, 1, 3, 5, 1, 4, 7, 5, 6, 0, 6, 7, 6, 0, 5, 8, 8, 6, 9, 6, 6, 3, 0, 9, 2, 7, 3, 5, 4, 6, 9, 1, 6, 8, 5, 9, 8, 1, 6, 6, 0, 3, 1, 4, 9, 6, 8, 3, 7, 8, 6, 5, 4, 1, 2, 5, 0
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.2538740823782760029885088938163329123847636343193313514756067...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Sum(8*(n+1)*(-1)^n / ((n^2 - 2*k^2 + 2*k*n + n + 2) * (n^2 - 2*k^2 + 2*k*n + 5*n + 6)), k=0..n), n=0..infinity), 120);
  • Mathematica
    RealDigits[NIntegrate[QPochhammer[x]^2, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)

Formula

Equals Sum_{n>=0} Sum_{k=0..n} 8*(n+1)*(-1)^n / ((n^2 - 2*k^2 + 2*k*n + n + 2) * (n^2 - 2*k^2 + 2*k*n + 5*n + 6)).
Equals Sum_{n>=0} Sum_{j=-floor(n/2)..floor(n/2)} (-1)^(n+j) / (n*(n+1)/2 - j*(3*j-1)/2 + 1).

A010818 Expansion of Product (1 - x^k)^10 in powers of x.

Original entry on oeis.org

1, -10, 35, -30, -105, 238, 0, -260, -165, 140, 1054, -770, -595, 0, -715, 2162, 455, 0, -2380, -1820, 2401, -680, 1495, 3080, 1615, -6958, -1925, 0, 0, 5100, -1442, 8330, -5355, 1330, 0, -16790, 0, 8190, 8265, 0, 1918, 0, 8415, -10230, -7140, -9362
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 - 10*x + 35*x^2 - 30*x^3 - 105*x^4 + 238*x^5 - 260*x^7 - 165*x^8 + ...
G.f. = q^5 - 10*q^17 + 35*q^29 - 30*q^41 - 105*q^53 + 238*q^65 - 260*q^89 + ...
		

References

  • Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

Crossrefs

Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^10, {x, 0, n}]; (* Michael Somos, Jun 24 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^10, n))}; /* Michael Somos, Jun 09 2011 */
    
  • PARI
    {a(n) = local(m, x, y, z); if( n<0, 0, m = 12*n + 5; z = 0; for( x = -sqrtint(m), sqrtint(m), if( x%6 != 1, next); if( issquare( m - x^2, &y), if( y%6 == 2, y = -y); if( y%6 == 4, z += x*y * (x*x - y*y) ))); z / 6)}; /* Michael Somos, Jun 09 2011 */
    
  • PARI
    {a(n) = local(A, p, e, i, x, y, a0, a1); if( n<0, 0, n = 12*n + 5; A = factor(n); 1 / 48 * prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p<5, 0, if( p%12 > 6, if( e%2, 0, p^(2*e)), forstep( i = 1, sqrtint( p), 2, if( issquare( p - i^2, &y), x=i; break)); if( p%12 == 5, a1 = 8 * x*y * (x-y) * (x+y) * (-1)^((x%6==1) + (y%6==4)), a1 = 2 * (x^2-y^2+2*x*y) * (x^2-y^2-2*x*y) * (-1)^(x%6==3) ); a0 = 1; y = a1; for( i=2, e, x = y * a1 - p^4 * a0; a0=a1; a1=x); a1 )))))}; /* Michael Somos, Jun 24 2013 */

Formula

Expansion of f(-x)^10 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-5/12) * eta(q)^10 in powers of q. - Michael Somos, Jun 09 2011
a(n) = b(12*n + 5) / 48 where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 7 or 11 (mod 12), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 or 5 (mod 12). - Michael Somos, Jun 24 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12^5 (t/i)^5 f(t) where q = exp(2 Pi i t). - Michael Somos, Jan 06 2014
G.f.: Product_{k>0} (1 - x^k)^10. a(49*n + 20) = 2401 * a(n).
48 * a(n) = A234565(3*n + 1). a(7*n + 2) = 0 unless n == 2 (mod 7). - Michael Somos, Jul 18 2014
a(0) = 1, a(n) = -(10/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-10*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are congruent to 7 (mod 12) or 11 (mod 12). Then a( M^2*n + 10*(M^2 - 1)/24 ) = M^4*a(n). See Cooper et al., Theorem 1. - Peter Bala, Dec 01 2020

A319933 A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, 0, -1, -3, 1, 0, 0, 2, 0, -4, 1, 0, 1, 1, 5, 2, -5, 1, 0, 0, 2, 0, 8, 5, -6, 1, 0, 1, -2, 0, -5, 10, 9, -7, 1, 0, 0, 0, -7, -4, -15, 10, 14, -8, 1, 0, 0, -2, 0, -10, -6, -30, 7, 20, -9, 1, 0, 0, -2, 0, 8, -5, 0, -49, 0, 27, -10, 1
Offset: 0

Views

Author

Peter Luschny, Oct 02 2018

Keywords

Comments

The columns are generated by polynomials whose coefficients constitute the triangle of signed D'Arcais numbers A078521 when multiplied with n!.

Examples

			[ 0] 1,   0,   0,    0,     0,    0,     0,     0,     0,     0, ... A000007
[ 1] 1,  -1,  -1,    0,     0,    1,     0,     1,     0,     0, ... A010815
[ 2] 1,  -2,  -1,    2,     1,    2,    -2,     0,    -2,    -2, ... A002107
[ 3] 1,  -3,   0,    5,     0,    0,    -7,     0,     0,     0, ... A010816
[ 4] 1,  -4,   2,    8,    -5,   -4,   -10,     8,     9,     0, ... A000727
[ 5] 1,  -5,   5,   10,   -15,   -6,    -5,    25,    15,   -20, ... A000728
[ 6] 1,  -6,   9,   10,   -30,    0,    11,    42,     0,   -70, ... A000729
[ 7] 1,  -7,  14,    7,   -49,   21,    35,    41,   -49,  -133, ... A000730
[ 8] 1,  -8,  20,    0,   -70,   64,    56,     0,  -125,  -160, ... A000731
[ 9] 1,  -9,  27,  -12,   -90,  135,    54,   -99,  -189,   -85, ... A010817
[10] 1, -10,  35,  -30,  -105,  238,     0,  -260,  -165,   140, ... A010818
    A001489,  v , A167541, v , A319931,  v ,         diagonal: A008705
           A080956       A319930      A319932
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.

Crossrefs

Transpose of A286354.
Cf. A078521, A319574 (JacobiTheta3).

Programs

  • Julia
    # DedekindEta is defined in A000594
    for n in 0:10
        DedekindEta(10, n) |> println
    end
  • Maple
    DedekindEta := (x, n) -> mul(1-x^j, j=1..n):
    A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1):
    seq(coeff(%, x, j), j=0..len-1) end:
    seq(print([n], A319933row(n, 10)), n=0..10);
  • Mathematica
    eta[x_, n_] := Product[1 - x^j, {j, 1, n}];
    A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}];
    Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
  • Sage
    from sage.modular.etaproducts import qexp_eta
    def A319933row(n, len):
        return (qexp_eta(ZZ['q'], len+4)^n).list()[:len]
    for n in (0..10):
        print(A319933row(n, 10))
    

A293388 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} (-1)^j*j*x^(j*i))^2.

Original entry on oeis.org

1, 1, 0, 1, -2, 0, 1, -2, -1, 0, 1, -2, 3, 2, 0, 1, -2, 3, -2, 1, 0, 1, -2, 3, -8, 1, 2, 0, 1, -2, 3, -8, 7, -6, -2, 0, 1, -2, 3, -8, 15, -6, 14, 0, 0, 1, -2, 3, -8, 15, -14, 17, -20, -2, 0, 1, -2, 3, -8, 15, -24, 17, -14, 22, -2, 0, 1, -2, 3, -8, 15, -24, 27
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,   1, ...
   0, -2, -2, -2,  -2, ...
   0, -1,  3,  3,   3, ...
   0,  2, -2, -8,  -8, ...
   0,  1,  1,  7,  15, ...
   0,  2, -6, -6, -14, ...
		

Crossrefs

Columns k=0..1 give A000007, A002107.
Rows n=0 gives A000012.
Main diagonal gives A293389.
Product_{i>0} 1/(1 + Sum_{j=1..k} (-1)^j*j*x^(j*i))^m: A292577 (m=-2), A293307 (m=-1), A293305 (m=1), this sequence (m=2).

A369710 Maximal coefficient of (1 - x)^2 * (1 - x^2)^2 * (1 - x^3)^2 * ... * (1 - x^n)^2.

Original entry on oeis.org

1, 1, 4, 3, 10, 6, 20, 12, 34, 24, 64, 52, 116, 103, 208, 223, 410, 470, 808, 992, 1620, 2120, 3352, 4494, 6980, 9584, 14680, 20400, 31128, 43774, 66288, 93968, 141654, 201766, 303716, 433746, 652612, 936334, 1404920, 2021344, 3029564, 4364300, 6541872, 9437054
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[CoefficientList[Product[(1 - x^k)^2, {k, 1, n}], x]], {n, 0, 43}]
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, (1-x^k)^2))); \\ Michel Marcus, Jan 30 2024

A122266 Expansion of f(-q)^2 * Q(q) in powers of q.

Original entry on oeis.org

1, 238, 1679, 2162, 2401, -6958, -1442, -23040, 1918, -9362, 14641, 0, 80640, -20398, 28083, 64078, -38398, -69120, 0, -90482, -58562, 0, -241920, 100558, 146879, 0, -193438, 399602, 104638, 114002, 130321, 24242, 0, 107282, -276962, 351118
Offset: 0

Views

Author

Michael Somos, Aug 28 2006

Keywords

Comments

f(-q) (g.f. A010815) and Q(q) (g.f. A004009) are Ramanujan q-series.

Examples

			G.f. = 1 + 238*x + 1679*x^2 + 2162*x^3 + 2401*x^4 - 6958*x^5 - 1442*x^6 + ...
G.f. = q + 238*q^13 + 1679*q^25 + 2162*q^37 + 2401*q^49 - 6958*q^61 - 1442*q^73 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1 + 240 Sum[ DivisorSigma[ 3, k] q^k, {k, n}]) QPochhammer[ q]^2, {q, 0, n}]; (* Michael Somos, Jun 24 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 (EllipticTheta[ 4, 0, q]^8 + EllipticTheta[ 2, 0, q^(1/2)]^8), {q, 0, n}]; (* Michael Somos, Jun 25 2013 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * sum( k=1, n, 240 * sigma( k, 3) * x^k, 1 + A), n))};
    
  • PARI
    {a(n) = my(A, B); if( n<0, 0, A = x * O(x^n); B = 64 * x * (eta(x^4 + A) / eta(x + A))^8; polcoeff( (1 + 4*B + B^2) * eta(x + A)^18 / eta(x^2 + A)^8, n))}; /* Michael Somos, Jun 25 2013 */
    
  • PARI
    {a(n) = my(A, p, e, i, x, y, a0, a1); if( n<0, 0, n = 12*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p<5, 0, if( p%12 > 6, if( e%2, 0, p^(2*e)), forstep( i = 1, sqrtint( p), 2, if( issquare( p - i^2, &y), x=i; break)); if( p%12 == 5, a1 = 8 * x*y * (x-y) * (x+y) * (-1)^((x%6==1) + (y%6==4)), a1 = 2 * (x^2-y^2+2*x*y) * (x^2-y^2-2*x*y) * (-1)^(x%6==3) ); a0 = 1; y = a1; for( i=2, e, x = y * a1 - p^4 * a0; a0=a1; a1=x); a1 )))))}; /* Michael Somos, Jun 24 2013 */

Formula

Expansion of q^(-1/12) * (eta(q)^16 + 256 * eta(q)^8 * eta(q^4)^8 + 4096 * eta(q^4)^16) * eta(q)^2 / eta(q^2)^8 in powers of q. - Michael Somos, Jun 25 2013
a(n) = b(12*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 7 or 11 (mod 12), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 or 5 (mod 12). - Michael Somos, Jun 24 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12^5 (t/i)^5 f(t) where q = exp(2 Pi i t). - Michael Somos, Jan 06 2014
Convolution of A002107 and A004009. - Michael Somos, Jun 25 2013
Expansion of q^(-1/12) * (eta(q)^24 + 256*eta(q^2)^24) / (eta(q)^6*eta(q^2)^8) = q^(-1/12) * (eta(q)^12 + 250*eta(q)^6*eta(q^5)^6 + 3125*eta(q^5)^12) / eta(q^5)^2 in powers of q. - Michael Somos, Feb 03 2023

A208845 Expansion of f(x)^2 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, -1, -2, 1, -2, -2, 0, -2, 2, 1, 0, 0, -2, 3, 2, 2, 0, 0, 2, -2, 0, 0, 2, -1, 0, 2, -2, -2, -2, 1, -2, 0, -2, -2, 2, 2, 0, -2, 0, -4, 0, 0, 0, 1, 2, 0, 0, 2, 0, 2, -2, 1, 2, 0, -2, 2, 0, 0, 2, 0, 2, 0, 2, 2, 0, -4, 0, 0, 2, -1, -2, 0, -2, 0, 0, 0, 2, 2
Offset: 0

Views

Author

Michael Somos, Mar 03 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 73 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 + 2*x - x^2 - 2*x^3 + x^4 - 2*x^5 - 2*x^6 - 2*x^8 + 2*x^9 + x^10 + ...
G.f. = q + 2*q^13 - q^25 - 2*q^37 + q^49 - 2*q^61 - 2*q^73 - 2*q^97 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^2 , {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = my(A, p, e, m); if( n<0, 0, n = 12*n + 1; A=factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%12>1, if( e%2, 0, (-1)^( (p%12==5) * e/2)), for( i=1, sqrtint(p\9), if( issquare( p - 9*i^2), m=i; break)); (e+1) * (-1)^(e * ( (p%24>1) + m )))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A)))^2, n))};

Formula

Expansion of q^(-1/12) * (eta(q^2)^3 / (eta(q) * eta(q^4)))^2 in powers of q.
Euler transform of period 4 sequence [ 2, -4, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = (24)^(1/2) (t/i)^(1/2) f(t) where q = exp(2 Pi i t).
a(n) = b(12*n + 1) where b(n) is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12), b(p^e) = (-1)^(e/2) * (1 + (-1)^e) / 2 if p == 5 (mod 12), b(p^e) = (e + 1) * (-1)^(e * ((p%24>1) + x)) if p == 1 (mod 12) and p = x^2 + 9 * y^2.
a(n) = (-1)^n * A002107(n). a(25*n + 2) = -a(n).
Convolution cube is A209941. - Michael Somos, Jun 09 2015

A304080 Triangular array T(n,k) giving coefficients in expansion of Product_{j=1..n} (1-x^j)^2.

Original entry on oeis.org

1, 1, -2, 1, 1, -2, -1, 4, -1, -2, 1, 1, -2, -1, 2, 3, 0, -6, 0, 3, 2, -1, -2, 1, 1, -2, -1, 2, 1, 4, -4, -4, -2, 0, 10, 0, -2, -4, -4, 4, 1, 2, -1, -2, 1, 1, -2, -1, 2, 1, 2, 0, -2, -6, -2, 3, 6, 5, 2, -3, -12, -3, 2, 5, 6, 3, -2, -6, -2, 0, 2, 1, 2, -1, -2, 1
Offset: 0

Views

Author

Seiichi Manyama, May 06 2018

Keywords

Examples

			Irregular triangle starts:
n\k| 0   1   2  3   4   5   6   7   8  9  10  11  12  13  14 15 16 17  18  19 20
---+-----------------------------------------------------------------------------
0  | 1;
1  | 1, -2,  1;
2  | 1, -2, -1, 4, -1, -2,  1;
3  | 1, -2, -1, 2,  3,  0, -6,  0,  3, 2, -1, -2,  1;
4  | 1, -2, -1, 2,  1,  4, -4, -4, -2, 0, 10,  0, -2, -4, -4, 4, 1, 2, -1, -2, 1;
		

Crossrefs

Programs

  • PARI
    T(n, k) = polcoef(prod(j=1, n, (1-x^j)^2), k);
    tabf(nn) = for(n=0, nn, for(k=0, n*(n+1), print1(T(n, k), ", ")); print)

A371551 Expansion of e.g.f. Product_{k>=1} (1 - x^k/k!)^2.

Original entry on oeis.org

1, -2, 0, 10, -4, -42, -258, 306, 5980, 3142, 61730, -794334, -3299074, -8459830, 40220390, 1550926110, 1631691740, 43693916390, -125593997262, -4079362135854, -32054212967294, -33715330874838, -600410923342450, 9383532800084966, 329821022627776798
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[Product[(1 - x^k/k!)^2, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

A380499 Absolute value of the minimum coefficient of (1 - x)^2 * (1 - x^2)^2 * (1 - x^3)^2 * ... * (1 - x^n)^2.

Original entry on oeis.org

1, 2, 2, 6, 4, 12, 8, 24, 19, 44, 36, 78, 74, 148, 156, 286, 322, 556, 682, 1120, 1448, 2308, 3072, 4784, 6538, 10064, 14001, 21296, 29928, 45276, 64032, 96712, 137520, 207156, 296236, 444748, 637812, 956884, 1373622, 2062080, 2968872, 4450120, 6422472, 9616202, 13894990, 20802836
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2025

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember;
         `if`(n=0, 1, expand(p(n-1)*(1-x^n)^2))
        end:
    a:= n-> abs(min(coeffs(p(n)))):
    seq(a(n), n=0..45);  # Alois P. Heinz, Jan 25 2025
  • Mathematica
    Table[Min[CoefficientList[Product[(1 - x^k)^2, {k, 1, n}], x]], {n, 0, 45}] // Abs
  • PARI
    a(n) = abs(vecmin(Vec(prod(k=1, n, (1-x^k)^2)))); \\ Michel Marcus, Jan 25 2025
Previous Showing 11-20 of 21 results. Next