cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 165 results. Next

A386241 Decimal expansion of sqrt(5)*sin(Pi/8).

Original entry on oeis.org

8, 5, 5, 7, 0, 6, 1, 6, 8, 6, 3, 1, 2, 8, 3, 8, 4, 7, 7, 7, 4, 8, 1, 8, 0, 7, 1, 8, 2, 4, 6, 8, 3, 7, 0, 7, 3, 0, 1, 7, 0, 4, 1, 9, 3, 5, 9, 7, 3, 3, 4, 5, 4, 8, 0, 8, 7, 2, 2, 4, 2, 2, 8, 6, 4, 8, 0, 0, 9, 5, 0, 6, 5, 9, 8, 8, 2, 5, 8, 7, 5, 5, 4, 5, 0, 0, 9
Offset: 0

Views

Author

Hugo Pfoertner, Jul 18 2025

Keywords

Comments

Upper bound of the wobbling distance S of two rotated square lattices. See A307110 and A307731 for the special case of rotation angle Pi/4. According to Jan Fricke (1999), the angle Pi/4 is the most unfavorable case, i.e., smaller bounds can be found for all other angles.

Examples

			0.8557061686312838477748180718246837073...
		

Crossrefs

Programs

Formula

The minimal polynomial is 8*x^4 - 40*x^2 + 25. - Joerg Arndt, Aug 02 2025

A386852 Decimal expansion of the dihedral angle, in radians, between the pentagonal face and a triangular face in a pentagonal pyramid with equal edges (Johnson solid J_2).

Original entry on oeis.org

6, 5, 2, 3, 5, 8, 1, 3, 9, 7, 8, 4, 3, 6, 8, 1, 8, 5, 9, 9, 5, 3, 9, 0, 6, 3, 1, 6, 4, 3, 8, 2, 2, 5, 7, 4, 3, 6, 5, 3, 0, 7, 9, 1, 9, 9, 6, 2, 9, 7, 9, 7, 4, 1, 7, 9, 4, 7, 2, 7, 9, 4, 6, 7, 0, 6, 1, 4, 3, 5, 8, 3, 8, 2, 1, 0, 3, 9, 5, 3, 2, 9, 0, 9, 5, 6, 7, 1, 4, 4
Offset: 0

Views

Author

Paolo Xausa, Aug 05 2025

Keywords

Comments

Also the dihedral angle, in radians, between the 10-gonal face and a triangular face in a pentagonal cupola (Johnson solid J_5)

Examples

			0.65235813978436818599539063164382257436530791996...
		

Crossrefs

Cf. A179552 (J_2 volume), A179553 (J_2 surface area).
Cf. A179590 (J_5 volume), A179591 (J_5 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcSec[Sqrt[15 - 6*Sqrt[5]]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J2", "DihedralAngles"]], 10, 100]]
  • PARI
    acos(sqrt((5+2*sqrt(5))/15)) \\ Charles R Greathouse IV, Aug 19 2025

Formula

Equals arcsec(sqrt(15 - 6*sqrt(5))) = arcsec(sqrt(15 - 6*A002163)).
Equals arccos(sqrt((5 + 2*sqrt(5))/15)) = arccos(sqrt((5 + A010476)/15)).

A004558 Expansion of sqrt(5) in base 5.

Original entry on oeis.org

2, 1, 0, 4, 2, 2, 3, 2, 4, 0, 1, 1, 3, 2, 4, 1, 0, 4, 0, 0, 1, 3, 4, 4, 1, 2, 3, 3, 0, 4, 1, 3, 0, 4, 2, 4, 2, 2, 2, 1, 2, 1, 3, 2, 1, 1, 3, 0, 1, 3, 1, 0, 3, 2, 1, 0, 0, 1, 0, 2, 2, 1, 4, 2, 3, 4, 4, 4, 3, 4, 3, 4, 2, 4, 2, 3, 4, 4, 1, 4, 4, 4, 2, 1, 1, 3, 0, 3, 2, 1, 4, 0, 1, 3, 0, 3, 2, 2, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A002163.

Programs

  • Magma
    Prune(Reverse(IntegerToSequence(Isqrt(5*5^200), 5))); // Vincenzo Librandi, Apr 29 2017
  • Mathematica
    RealDigits[Sqrt[5], 5, 100][[1]] (* Vincenzo Librandi, Apr 29 2017 *)

Extensions

Updated by Alois P. Heinz at the suggestion of Kevin Ryde, Feb 19 2012

A059176 Engel expansion of sqrt(5) = 2.23606...

Original entry on oeis.org

1, 1, 5, 6, 13, 16, 16, 38, 48, 58, 104, 177, 263, 332, 389, 4102, 4575, 5081, 9962, 18316, 86613, 233239, 342534, 964372, 1452850, 7037119, 7339713, 8270361, 12855437, 15900982, 19211148, 1365302354, 1565752087, 1731612283
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A002163.
Essentially the same as A028259.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Sqrt[5], 7!], 50] (* modified by G. C. Greubel, Dec 26 2016 *)

A171546 Decimal expansion of sqrt(3/35).

Original entry on oeis.org

2, 9, 2, 7, 7, 0, 0, 2, 1, 8, 8, 4, 5, 5, 9, 9, 5, 3, 8, 0, 6, 3, 1, 5, 3, 9, 0, 8, 7, 2, 0, 3, 0, 0, 5, 6, 8, 7, 8, 1, 4, 3, 7, 9, 0, 3, 8, 4, 4, 2, 3, 7, 9, 7, 9, 8, 6, 9, 1, 3, 6, 7, 1, 4, 2, 5, 4, 3, 8, 5, 1, 3, 8, 7, 7, 2, 9, 5, 8, 3, 0, 6, 5, 5, 0, 6, 3, 7, 6, 0, 8, 1, 0, 8, 1, 5, 6, 2, 1, 0, 5, 5, 8, 4, 1
Offset: 0

Views

Author

R. J. Mathar, Dec 11 2009

Keywords

Comments

The absolute value of the Clebsch-Gordan coupling coefficient = <2 3/2 ; 0 -1/2 | 5/2 -1/2>.

Examples

			sqrt(3/35) = sqrt(105)/35 = 0.2927700218845599538063153..
		

Programs

  • Mathematica
    RealDigits[Sqrt[3/35],10,120][[1]]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

A176445 Decimal expansion of sqrt(1295).

Original entry on oeis.org

3, 5, 9, 8, 6, 1, 0, 8, 4, 3, 0, 8, 9, 3, 1, 6, 3, 1, 9, 4, 1, 2, 8, 7, 1, 6, 4, 5, 5, 7, 7, 7, 2, 9, 1, 0, 1, 4, 5, 4, 9, 1, 1, 9, 1, 9, 8, 5, 9, 9, 1, 5, 4, 4, 0, 6, 2, 6, 0, 2, 6, 7, 3, 6, 5, 5, 5, 1, 8, 6, 5, 6, 0, 2, 6, 7, 0, 3, 2, 2, 1, 0, 0, 9, 5, 2, 2, 9, 0, 0, 2, 1, 3, 9, 1, 1, 3, 1, 6, 8, 6, 9, 8, 1, 8
Offset: 2

Views

Author

Klaus Brockhaus, Apr 19 2010

Keywords

Comments

Continued fraction expansion of sqrt(1295) is 35 followed by (repeat 1, 70).
sqrt(1295) = sqrt(5)*sqrt(7)*sqrt(37).

Examples

			sqrt(1295) = 35.98610843089316319412...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[1295],10,120][[1]] (* Harvey P. Dale, Apr 19 2019 *)

A176909 Decimal expansion of sqrt(230).

Original entry on oeis.org

1, 5, 1, 6, 5, 7, 5, 0, 8, 8, 8, 1, 0, 3, 1, 0, 1, 1, 0, 8, 5, 1, 3, 6, 5, 0, 8, 7, 2, 5, 6, 4, 1, 4, 3, 1, 0, 9, 0, 9, 9, 2, 8, 4, 2, 7, 9, 0, 3, 4, 9, 2, 4, 5, 0, 6, 4, 5, 2, 4, 2, 0, 0, 3, 5, 5, 8, 4, 4, 6, 6, 7, 7, 3, 6, 5, 0, 8, 4, 9, 9, 3, 1, 8, 2, 8, 1, 2, 1, 8, 6, 2, 8, 2, 7, 8, 9, 2, 8, 0, 7, 0, 6, 7, 3
Offset: 2

Views

Author

Klaus Brockhaus, Apr 28 2010

Keywords

Comments

Continued fraction expansion of sqrt(230) is 15 followed by A165734.

Examples

			sqrt(230) = 15.16575088810310110851...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A002163 (decimal expansion of sqrt(5)), A010479 (decimal expansion of sqrt(23)), A176906 (decimal expansion of (15+sqrt(230))/5), A165734 (repeat 6, 30).

A178039 Decimal expansion of sqrt(44310).

Original entry on oeis.org

2, 1, 0, 4, 9, 9, 4, 0, 6, 1, 7, 4, 9, 3, 4, 3, 7, 4, 8, 0, 1, 5, 0, 8, 8, 5, 6, 7, 8, 2, 2, 4, 9, 5, 9, 7, 2, 3, 7, 0, 2, 6, 3, 5, 3, 6, 2, 9, 6, 8, 3, 4, 8, 2, 8, 7, 1, 3, 0, 9, 0, 1, 6, 3, 1, 8, 2, 8, 7, 3, 9, 9, 5, 2, 9, 4, 5, 9, 8, 8, 9, 5, 3, 6, 8, 8, 7, 3, 8, 2, 5, 9, 2, 7, 1, 5, 6, 8, 0, 4, 9, 2, 4, 0, 7
Offset: 3

Views

Author

Klaus Brockhaus, May 17 2010

Keywords

Comments

Continued fraction expansion of sqrt(44310) is 210 followed by (repeat 2, 420).
sqrt(44310) = sqrt(2)*sqrt(3)*sqrt(5)*sqrt(7)*sqrt(211).

Examples

			sqrt(44310) = 210.49940617493437480150...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A002194 (decimal expansion of sqrt(3)), A002163 (decimal expansion of sqrt(5)), A010465 (decimal expansion of sqrt(7)), A178040 (decimal expansion of sqrt(211)), A178038 (decimal expansion of (161+sqrt(44310))/259).

A195285 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 3,4,5 right triangle ABC.

Original entry on oeis.org

5, 9, 7, 7, 2, 3, 3, 5, 0, 7, 5, 2, 0, 7, 4, 9, 4, 5, 7, 2, 3, 2, 0, 6, 6, 7, 8, 8, 9, 7, 7, 0, 7, 0, 6, 2, 3, 6, 6, 0, 8, 3, 2, 3, 9, 1, 5, 9, 6, 3, 0, 5, 3, 5, 1, 5, 5, 2, 1, 6, 1, 0, 7, 4, 9, 3, 3, 6, 5, 1, 8, 1, 2, 4, 9, 0, 1, 4, 8, 1, 5, 9, 4, 5, 3, 9, 0, 6, 8, 4, 6, 6, 2, 7, 9, 9, 9, 1, 2, 5
Offset: 0

Views

Author

Clark Kimberling, Sep 14 2011

Keywords

Comments

See A195284 for a definition of Philo(ABC,I) and general discussion.

Examples

			Philo(ABC,I)=0.59772335075207494572...
		

Crossrefs

Programs

  • Mathematica
    a = 3; b = 4; c = 5;
    h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195284 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (B) A002163 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (C) A010466 *)
    (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,I) A195285 *)

A229780 Decimal expansion of (3+sqrt(5))/10.

Original entry on oeis.org

5, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7
Offset: 0

Views

Author

Joost Gielen, Sep 29 2013

Keywords

Comments

sqrt((3+sqrt(5))/10) = sqrt(phi^2/5) = (5+sqrt(5))/10 = (3+sqrt(5))/10 + 2/10 = 0.723606797... .
Essentially the same as A134972, A134945, A098317 and A002163. - R. J. Mathar, Sep 30 2013
Equals one tenth of the limit of (G(n+2)+G(n+1)+G(n-1)+G(n-2))/G(n), where G(n) is any nonzero sequence satisfying the recurrence G(n+1) = G(n) + G(n-1) including A000032 and A000045, as n --> infinity. - Richard R. Forberg, Nov 17 2014
3+sqrt(5) is the perimeter of a golden rectangle with a unit width. - Amiram Eldar, May 18 2021
Constant x such that x = sqrt(x) - 1/5. - Andrea Pinos, Jan 15 2024

Examples

			0.5236067977499...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio^2/5,10,120][[1]] (* Harvey P. Dale, Dec 02 2014 *)

Formula

(3+sqrt(5))/10 = (phi/sqrt(5))^2 = phi^2/5 where phi is the golden ratio.
Previous Showing 101-110 of 165 results. Next