cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 165 results. Next

A208899 Decimal expansion of sqrt(5)/3.

Original entry on oeis.org

7, 4, 5, 3, 5, 5, 9, 9, 2, 4, 9, 9, 9, 2, 9, 8, 9, 8, 8, 0, 3, 0, 5, 7, 8, 8, 9, 5, 7, 7, 0, 9, 2, 0, 7, 8, 4, 8, 0, 2, 0, 6, 1, 1, 9, 8, 7, 0, 5, 0, 8, 5, 7, 4, 7, 5, 6, 9, 6, 5, 7, 4, 8, 4, 7, 0, 1, 7, 3, 6, 4, 1, 8, 7, 9, 2, 6, 8, 2, 9, 9, 8, 0, 4, 8, 0, 4, 8, 0, 2, 7, 9, 2, 9, 2, 7, 4, 2, 4, 9
Offset: 0

Views

Author

R. J. Mathar, Mar 03 2012

Keywords

Comments

Equals the absolute value of the cosine of the dihedral angle between two adjacent faces of the regular icosahedron.

Examples

			0.7453559924...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[5]/3,10,120][[1]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    first(n) = default(realprecision, max(28, n+10)); digits(((sqrt(5)/3)*10^n)\1) \\ David A. Corneth, Dec 19 2022

Formula

Equals A002163/3 = 20*A020837/3.
Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)/5^k. - Amiram Eldar, Aug 03 2020

A241149 Decimal expansion of sqrt(2) + sqrt(3) + sqrt(5).

Original entry on oeis.org

5, 3, 8, 2, 3, 3, 2, 3, 4, 7, 4, 4, 1, 7, 6, 2, 0, 3, 8, 7, 3, 8, 3, 0, 8, 7, 3, 4, 4, 4, 6, 8, 4, 6, 6, 8, 0, 9, 5, 3, 0, 9, 5, 4, 8, 8, 7, 9, 8, 8, 5, 4, 4, 2, 5, 5, 0, 3, 3, 8, 3, 9, 6, 2, 8, 5, 3, 1, 8, 6, 4, 2, 1, 0, 0, 8, 7, 1, 1, 9, 7, 5, 3, 4, 5, 9, 4, 8, 1, 2, 9, 4, 6, 3, 6, 7, 2, 4, 2, 3, 3, 8, 0, 1, 4, 8, 1, 6, 3, 7, 9, 7, 0, 9, 2, 7, 8, 3, 5, 5, 9, 1, 4, 8, 0, 4, 8, 8, 7, 5, 2, 9, 6, 7, 6, 3
Offset: 1

Views

Author

K. D. Bajpai, Apr 16 2014

Keywords

Comments

This is an algebraic integer, with its minimal polynomial being x^8 - 40x^6 + 352x^4 - 960x^2 + 576. - Alonso del Arte, Apr 17 2014

Examples

			5.382332347441762038738308734446846680953095488798854425503383962...
		

Crossrefs

Cf. A002163 (decimal expansion: sqrt(5)).
Cf. A002193 (decimal expansion: sqrt(2)).
Cf. A002194 (decimal expansion: sqrt(3)).

Programs

  • Magma
    Sqrt(2) + Sqrt(3) + Sqrt(5); // G. C. Greubel, Jul 27 2018
  • Maple
    evalf(add(sqrt(ithprime(i)), i=1..3), 121);  # Alois P. Heinz, Jun 13 2022
  • Mathematica
    RealDigits[Sqrt[2] + Sqrt[3] + Sqrt[5], 10, 200]
  • PARI
    sqrt(2) + sqrt(3) + sqrt(5) \\ G. C. Greubel, Jul 27 2018
    

A265297 Decimal expansion of sum{x - c(2n-1), n=1,2,...}, where c = convergents to (x = sqrt(5)).

Original entry on oeis.org

2, 3, 6, 8, 4, 4, 2, 4, 8, 5, 7, 0, 1, 4, 8, 1, 8, 7, 5, 9, 5, 3, 8, 0, 1, 7, 8, 2, 2, 9, 9, 0, 1, 1, 9, 4, 7, 6, 0, 9, 8, 0, 4, 2, 0, 1, 8, 2, 7, 4, 6, 3, 5, 3, 4, 6, 5, 2, 3, 3, 3, 3, 0, 8, 9, 6, 9, 1, 8, 8, 7, 4, 4, 3, 0, 3, 6, 3, 8, 2, 0, 4, 5, 1, 0, 6
Offset: 0

Views

Author

Clark Kimberling, Dec 07 2015

Keywords

Examples

			sum = 0.236844248570148187595380178229901194760980420...
		

Crossrefs

Cf. A002163, A265298, A265299, A265288 (guide).

Programs

  • Mathematica
    x = Sqrt[5]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265297 *)
    RealDigits[s2, 10, 120][[1]]  (* A265298 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265299 *)

A265298 Decimal expansion of sum{c(2n) - x, n=1,2,...}, where c = convergents to (x = sqrt(5)).

Original entry on oeis.org

0, 1, 3, 9, 7, 5, 2, 9, 0, 4, 8, 4, 1, 6, 0, 6, 9, 4, 6, 3, 0, 4, 3, 1, 9, 3, 7, 0, 2, 8, 4, 6, 9, 2, 8, 1, 3, 5, 3, 8, 0, 0, 2, 5, 5, 6, 4, 1, 8, 4, 2, 4, 2, 7, 3, 4, 1, 7, 9, 8, 4, 7, 0, 7, 1, 5, 1, 8, 7, 0, 8, 2, 4, 8, 3, 8, 8, 2, 4, 0, 8, 6, 3, 3, 5, 8
Offset: 0

Views

Author

Clark Kimberling, Dec 07 2015

Keywords

Examples

			sum = 0.01397529048416069463043193702846928135380025564...
		

Crossrefs

Cf. A002163, A265297, A265299, A265288 (guide).

Programs

  • Mathematica
    x = Sqrt[5]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265297 *)
    RealDigits[s2, 10, 120][[1]]  (* A265298 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265299 *)

A265299 Decimal expansion of sum{c(2n) - c(2n-1), n=1,2,...}, where c = convergents to (x = sqrt(5)).

Original entry on oeis.org

2, 5, 0, 8, 1, 9, 5, 3, 9, 0, 5, 4, 3, 0, 8, 8, 8, 2, 2, 2, 5, 8, 1, 2, 1, 1, 5, 2, 5, 8, 3, 7, 0, 4, 7, 6, 1, 1, 4, 7, 8, 0, 6, 7, 5, 8, 2, 4, 5, 8, 8, 7, 8, 0, 8, 0, 7, 0, 3, 1, 8, 0, 1, 6, 1, 2, 1, 0, 5, 9, 5, 6, 9, 1, 4, 2, 4, 6, 2, 2, 9, 0, 8, 4, 6, 5
Offset: 0

Views

Author

Clark Kimberling, Dec 07 2015

Keywords

Examples

			sum = 0.25081953905430888222581211525837047611...
		

Crossrefs

Cf. A002163, A265297, A265298, A265288 (guide).

Programs

  • Mathematica
    x = Sqrt[5]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265297 *)
    RealDigits[s2, 10, 120][[1]]  (* A265298 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265299 *)

A305308 Decimal expansion of Lagrange(4) = sqrt(1517)/13.

Original entry on oeis.org

2, 9, 9, 6, 0, 5, 2, 6, 2, 9, 8, 6, 9, 2, 9, 9, 4, 6, 9, 2, 3, 4, 1, 3, 9, 4, 0, 2, 6, 2, 6, 3, 1, 8, 6, 3, 9, 7, 5, 8, 3, 0, 2, 1, 9, 1, 5, 0, 0, 5, 6, 4, 4, 4, 8, 1, 4, 0, 5, 2, 6, 3, 4, 0, 6, 5, 6, 0, 1, 0, 3, 4, 0, 4, 3, 5, 8, 8, 8, 9, 9, 8, 0, 2, 7, 1, 3, 2, 6, 1, 7, 9, 0, 9, 3, 9, 8, 2, 1, 8, 5, 3, 0
Offset: 1

Views

Author

Wolfdieter Lang, Jun 25 2018

Keywords

Comments

For every irrational number alpha not equivalent to each of the following three numbers i) golden section A001622, ii) sqrt(2) = A002193 and iii) (5 + sqrt(221))/14 = A177841 there exist infinitely many rational numbers h/k (in lowest terms) such that |alpha - h/k| < 1/(Lagrange(4)*k^2). The constant L(4) cannot be replaced by a larger number because then the statement becomes false for, e.g., alpha = (23 + sqrt(1517))/26. Two real numbers x and y are equivalent if there exist integers p, q, r and s with |p*s - q*r| = 1 such that y = (p*x + q)/(r*x + s) (unimodular transformation). This means that the continued fractions of x and y become eventuakky identical.
See the references (in Havil, p. 174, equivalence classes of numbers should have been excluded).
The continued fraction of Lagrange(4) is [2; repeat(1, 252, 3, 1012, 3, 252, 1, 4)]. 1/L(4) = 0.3337725078... < 1/3.
Perron's numbers M(xi) (pp. 4, 5), for M(xi) < 3, are the Lagrange numbers sqrt(9*Q^2 - 4)/Q, with Q = Q(n) = A002559(n), n >= 1, and his corresponding xi(4) = (sqrt(1517) + 23)/26 with a purely periodic simple continued fraction [repeat(2, 2, 1, 1, 1, 1)].
Cassels (p. 18) uses the version: For irrational theta not equivalent to the above given three numbers i), ii) and iii) there are infinitely many solutions of q*||q*theta|| < 1/Lagrange(4), where 1/Lagrange(4) cannot be improved for theta equivalent to -29/26 + (1/26)*sqrt(1517). Here ||x|| is the positive difference between x and the nearest integer.

Examples

			2.9960526298692994692341394026263186397583021915005644481405263406560103404...
		

References

  • J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 174-175 and 221-224.
  • J. F. Koksma, Diophantische Approximationen, 1936, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vierter Band, Teil 4, Julius Springer, Berlin, pp. 29-33.
  • Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, p. 14.
  • Oskar Perron, Über die Approximation irrationaler Zahlen durch rationale, 4. Abhandlung, pp. 1- 17, and part II., 8. Abhandlung, pp. 1-12. Sitzungsber. Heidelberger Akademie der Wiss., 1921, Carls Winters Universitätsbuchhandlung.
  • Paulo Ribenboim, Meine Zahlen, meine Freunde, 2009, Springer, 10. 6 B, pp. 312-314.
  • Jörn Steuding, Diophantine Analysis, 2005, Chapman & Hall/CRC, pp. 80-82.

Crossrefs

The Lagrange numbers for n = 1..3 are A002163, A010466, A200991.

Programs

  • Mathematica
    RealDigits[Sqrt[1517]/13,10,120][[1]] (* Harvey P. Dale, Apr 12 2022 *)

Formula

Lagrange(4) = sqrt(9*M(4)^2 - 4)/M(4) = sqrt(9*13^2 - 4)/13 = sqrt(1517)/13, with the Markoff number M(4) = A002559(4) = 13.

A322159 Decimal expansion of 1 - 1/sqrt(5).

Original entry on oeis.org

5, 5, 2, 7, 8, 6, 4, 0, 4, 5, 0, 0, 0, 4, 2, 0, 6, 0, 7, 1, 8, 1, 6, 5, 2, 6, 6, 2, 5, 3, 7, 4, 4, 7, 5, 2, 9, 1, 1, 8, 7, 6, 3, 2, 8, 0, 7, 7, 6, 9, 4, 8, 5, 5, 1, 4, 5, 8, 2, 0, 5, 5, 0, 9, 1, 7, 8, 9, 5, 8, 1, 4, 8, 7, 2, 4, 3, 9, 0, 2, 0, 1, 1, 7, 1, 1, 7, 1, 1, 8, 3, 2, 4, 2, 4, 3, 5, 4, 5, 0, 0, 6
Offset: 0

Views

Author

Tristan Cam, Nov 29 2018

Keywords

Comments

Continued fraction: [0;1,1,4,4,4...].
Least root of the polynomial: 5x^2 - 10x + 4.

Examples

			0.552786404500042060718165266253744752911876328077...
		

Crossrefs

Programs

  • Maple
    evalf[110](1-1/sqrt(5)); # Muniru A Asiru, Dec 01 2018
  • Mathematica
    RealDigits[1-1/Sqrt[5], 10, 100][[1]] (* Amiram Eldar, Nov 29 2018 *)

Formula

Equals 1 - 1/A002163.
Equals 1/(1 - cos(4*Pi/5)) = (1/2)*csc(2*Pi/5)^2.
Also equal to 2/(phi*sqrt(5)) = 2/(A001622*A002163).
Equals 1 - A020762. - Andrew Howroyd, Nov 30 2018
From Amiram Eldar, Nov 28 2024: (Start)
Equals 2*A244847 = 1/A296182.
Equals Product_{k>=0} (1 - 1/A081010(k)). (End)

A349850 Decimal expansion of Sum_{k>=1} H(k)*F(k)/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and F(k) = A000045(k) is the k-th Fibonacci number.

Original entry on oeis.org

3, 9, 6, 8, 7, 4, 8, 0, 0, 6, 9, 0, 3, 9, 1, 4, 8, 5, 2, 1, 7, 1, 0, 6, 3, 6, 4, 0, 6, 1, 9, 9, 8, 5, 6, 8, 8, 6, 9, 8, 4, 2, 4, 3, 6, 3, 9, 6, 2, 2, 4, 8, 4, 3, 6, 7, 8, 3, 3, 9, 6, 6, 4, 2, 9, 4, 2, 1, 5, 4, 5, 3, 6, 7, 0, 6, 1, 8, 1, 1, 9, 9, 3, 8, 0, 6, 6, 8, 2, 4, 2, 1, 7, 6, 1, 5, 7, 1, 0, 7, 5, 2, 1, 9, 8
Offset: 1

Views

Author

Amiram Eldar, Dec 02 2021

Keywords

Examples

			3.96874800690391485217106364061998568869842436396224...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*Log[2] + 12*Log[GoldenRatio]/Sqrt[5], 10, 100][[1]]

Formula

Equals log(4*phi^(12/sqrt(5))) = 2*log(2) + 12*log(phi)/sqrt(5), where phi is the golden ratio (A001622).

A377750 Decimal expansion of the surface area of a truncated icosahedron with unit edge length.

Original entry on oeis.org

7, 2, 6, 0, 7, 2, 5, 3, 0, 3, 4, 1, 3, 3, 9, 2, 1, 8, 7, 8, 9, 3, 1, 5, 3, 3, 9, 7, 3, 8, 3, 9, 4, 8, 6, 2, 0, 1, 1, 7, 2, 6, 4, 7, 6, 5, 4, 4, 3, 3, 7, 9, 8, 7, 9, 2, 1, 5, 9, 3, 4, 5, 8, 6, 7, 8, 4, 4, 4, 1, 8, 4, 1, 3, 7, 7, 1, 5, 9, 5, 8, 8, 8, 4, 2, 3, 6, 8, 0, 4
Offset: 2

Views

Author

Paolo Xausa, Nov 06 2024

Keywords

Examples

			72.60725303413392187893153397383948620117264765443...
		

Crossrefs

Cf. A377751 (volume), A377752 (circumradius), A205769 (midradius + 1), A377787 (Dehn invariant).
Cf. A010527 (analogous for a regular icosahedron, with offset 1).

Programs

  • Mathematica
    First[RealDigits[3*(10*Sqrt[3] + Sqrt[25 + Sqrt[500]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosahedron", "SurfaceArea"], 10, 100]]
  • PARI
    3*(10*sqrt(3) + sqrt(25 + 10*sqrt(5))) \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals 3*(10*sqrt(3) + sqrt(25 + 10*sqrt(5))) = 30*A002194 + 3*sqrt(25 + 10*A002163).
Equals 30*(A002194 + A375067).

A377751 Decimal expansion of the volume of a truncated icosahedron with unit edge length.

Original entry on oeis.org

5, 5, 2, 8, 7, 7, 3, 0, 7, 5, 8, 1, 2, 2, 7, 3, 9, 2, 3, 6, 3, 9, 8, 6, 1, 6, 9, 3, 8, 8, 6, 1, 2, 1, 9, 5, 3, 0, 9, 8, 6, 6, 4, 7, 3, 6, 5, 8, 2, 3, 9, 0, 1, 5, 3, 5, 9, 1, 2, 1, 4, 5, 3, 8, 8, 1, 6, 3, 0, 9, 9, 9, 5, 0, 6, 0, 6, 4, 0, 2, 6, 6, 8, 7, 0, 4, 9, 5, 4, 8
Offset: 2

Views

Author

Paolo Xausa, Nov 07 2024

Keywords

Examples

			55.28773075812273923639861693886121953098664736582...
		

Crossrefs

Cf. A377750 (surface area), A377752 (circumradius), A205769 (midradius + 1), A377787 (Dehn invariant).
Cf. A102208 (analogous for a regular icosahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[(125 + 43*Sqrt[5])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosahedron", "Volume"], 10, 100]]
  • PARI
    (125 + 43*sqrt(5))/4 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals (125 + 43*sqrt(5))/4 = (125 + 43*A002163)/4.
Previous Showing 61-70 of 165 results. Next