cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 218 results. Next

A386690 Decimal expansion of the surface area of a diminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

5, 8, 1, 1, 4, 6, 5, 0, 7, 7, 7, 8, 0, 0, 0, 5, 9, 5, 0, 7, 5, 0, 2, 7, 8, 1, 9, 7, 2, 0, 1, 4, 0, 0, 1, 5, 2, 9, 5, 3, 3, 3, 9, 0, 9, 3, 0, 7, 4, 5, 5, 9, 0, 0, 4, 4, 0, 8, 5, 2, 0, 8, 5, 7, 6, 1, 4, 4, 4, 6, 5, 9, 4, 8, 9, 4, 4, 3, 5, 5, 9, 7, 9, 8, 4, 7, 6, 3, 6, 1
Offset: 2

Views

Author

Paolo Xausa, Jul 29 2025

Keywords

Comments

The diminished rhombicosidodecahedron is Johnson solid J_76.
Also the surface area of a paragyrate diminished rhombicosidodecahedron, a metagyrate diminished rhombicosidodecahedron and a bigyrate diminished rhombicosidodecahedron (Johnson solids J_77, J_78 and J_79, respectively) with unit edges.

Examples

			58.11465077780005950750278197201400152953339093...
		

Crossrefs

Cf. A386689 (volume).

Programs

  • Mathematica
    First[RealDigits[25 + (15*Sqrt[3] + 10*Sqrt[#] + 11*Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J76", "SurfaceArea"], 10, 100]]

Formula

Equals 25 + (15*sqrt(3) + 10*sqrt(5 + 2*sqrt(5)) + 11*sqrt(5*(5 + 2*sqrt(5))))/4 = 25 + (15*A002194 + 10*sqrt(5 + A010476) + 11*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 51200*x^7 + 4070400*x^6 - 162560000*x^5 + 3311844000*x^4 - 27184400000*x^3 - 92251037500*x^2 + 2593051875000*x - 8774179671875.

A386692 Decimal expansion of the surface area of a parabidiminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

5, 6, 9, 2, 3, 3, 1, 8, 7, 1, 0, 6, 8, 8, 1, 2, 9, 4, 7, 4, 2, 6, 0, 1, 8, 8, 5, 0, 7, 8, 3, 5, 3, 2, 6, 0, 3, 1, 4, 6, 4, 2, 6, 5, 5, 5, 2, 3, 1, 6, 8, 9, 6, 9, 9, 7, 4, 0, 6, 2, 4, 5, 7, 7, 0, 7, 4, 2, 8, 3, 8, 9, 0, 6, 8, 3, 7, 1, 1, 6, 9, 9, 8, 3, 0, 0, 2, 4, 6, 4
Offset: 2

Views

Author

Paolo Xausa, Jul 30 2025

Keywords

Comments

The parabidiminished rhombicosidodecahedron is Johnson solid J_80.
Also the surface area of a metabidiminished rhombicosidodecahedron and a gyrate bidiminished rhombicosidodecahedron (Johnson solids J_81 and J_82, respectively) with unit edges.

Examples

			56.9233187106881294742601885078353260314642655523...
		

Crossrefs

Cf. A386691 (volume).

Programs

  • Mathematica
    First[RealDigits[5/2*(8 + Sqrt[3] + 2*Sqrt[#] + Sqrt[5*#]) & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J80", "SurfaceArea"], 10, 100]]

Formula

Equals (5/2)*(8 + sqrt(3) + 2*sqrt(5 + 2*sqrt(5)) + sqrt(5*(5 + 2*sqrt(5)))) = (5/2)*(8 + A002194 + 2*sqrt(5 + A010476) + sqrt(5*(5 + A010476))).
Equals the largest root of x^8 - 160*x^7 + 9000*x^6 - 184000*x^5 - 828750*x^4 + 79100000*x^3 - 718984375*x^2 - 3800625000*x + 55781640625.

A386694 Decimal expansion of the surface area of a tridiminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

5, 5, 7, 3, 1, 9, 8, 6, 6, 4, 3, 5, 7, 6, 1, 9, 9, 4, 4, 1, 0, 1, 7, 5, 9, 5, 0, 4, 3, 6, 5, 6, 6, 5, 0, 5, 3, 3, 3, 9, 5, 1, 4, 0, 1, 7, 3, 8, 8, 8, 2, 0, 3, 9, 5, 0, 7, 2, 7, 2, 8, 2, 9, 6, 5, 3, 4, 1, 2, 1, 1, 8, 6, 4, 7, 2, 9, 8, 7, 8, 0, 1, 6, 7, 5, 2, 8, 5, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Jul 31 2025

Keywords

Comments

The tridiminished rhombicosidodecahedron is Johnson solid J_83.

Examples

			55.731986643576199441017595043656650533395140173888...
		

Crossrefs

Cf. A386693 (volume).

Programs

  • Mathematica
    First[RealDigits[(60 + 5*Sqrt[3] + 30*Sqrt[#] + 9*Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J83", "SurfaceArea"], 10, 100]]

Formula

Equals (60 + 5*sqrt(3) + 30*sqrt(5 + 2*sqrt(5)) + 9*sqrt(5*(5 + 2*sqrt(5))))/4 = (60 + 5*A002194 + 30*sqrt(5 + A010476) + 9*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 30720*x^7 + 844800*x^6 + 20736000*x^5 - 1109916000*x^4 + 6460560000*x^3 + 265641862500*x^2 - 4344667875000*x + 19010422828125.

A004548 Expansion of sqrt(3) in base 3.

Original entry on oeis.org

1, 2, 0, 1, 2, 0, 2, 1, 2, 2, 2, 2, 1, 2, 1, 0, 2, 2, 1, 2, 1, 1, 2, 0, 1, 0, 1, 2, 2, 2, 1, 0, 1, 2, 0, 1, 1, 0, 0, 2, 2, 2, 0, 0, 0, 1, 2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 2, 1, 0, 2, 1, 0, 2, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 1, 0, 2, 2, 0, 2, 0, 2, 1, 2, 0, 0, 1, 2, 2, 0, 0, 2, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A002194.

Programs

  • Magma
    Prune(Reverse(IntegerToSequence(Isqrt(3*3^200), 3))); // Vincenzo Librandi, Apr 29 2017
  • Mathematica
    RealDigits[Sqrt[3], 3, 100][[1]] (* Vincenzo Librandi, Apr 29 2017 *)

A067881 Factorial expansion of sqrt(3) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 0, 4, 2, 5, 10, 8, 1, 5, 6, 8, 5, 13, 18, 0, 7, 20, 9, 6, 14, 2, 7, 7, 18, 11, 0, 12, 20, 10, 31, 28, 27, 34, 29, 18, 13, 8, 28, 14, 9, 12, 39, 5, 15, 8, 5, 0, 7, 21, 54, 13, 16, 20, 24, 18, 12, 14, 6, 53, 21, 42, 47, 14, 46, 14, 42, 71, 41, 63, 24, 28, 32, 61, 35
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			sqrt(3) = 1 + 1/2! + 1/3! + 1/4! + 2/5! + 5/6! + 0/7! + 4/8! + 2/9! + ...
		

Crossrefs

Cf. A002194 (decimal expansion), A040001 (continued fraction).
Cf. A009949 (sqrt(2)), A068446 (sqrt(5)), A320839 (sqrt(7)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Sqrt(3))] cat [Floor(Factorial(n)*Sqrt(3)) - n*Floor(Factorial((n-1))*Sqrt(3)) : n in [2..80]]; // G. C. Greubel, Dec 10 2018
    
  • Maple
    Digits:=200: a:=n->`if`(n=1,floor(sqrt(3)),floor(factorial(n)*sqrt(3))-n*floor(factorial(n-1)*sqrt(3))): seq(a(n),n=1..90); # Muniru A Asiru, Dec 11 2018
  • Mathematica
    With[{b = Sqrt[3]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 10 2018 *)
  • PARI
    default(realprecision, 250); {b = sqrt(3); a(n) = if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b))};
    for(n=1, 80, print1(a(n), ", ")) \\ G. C. Greubel, Dec 10 2018
    
  • PARI
    apply( A067881(n)=if(n>1,sqrt(precision(3., n*log(n/2.5)\2.3+2))*(n-1)!%1*n\1,1), [1..79]) \\ M. F. Hasler, Dec 14 2018
    
  • Sage
    b=sqrt(3);
    def a(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) - n*floor(factorial(n-1)*b))
    [a(n) for n in (1..80)] # G. C. Greubel, Dec 10 2018

Formula

a(1) = 1; for n > 1, a(n) = floor(n!*sqrt(3)) - n*floor((n-1)!*sqrt(3)).

A153596 a(n) = ((5 + sqrt(3))^n - (5 - sqrt(3))^n)/(2*sqrt(3)).

Original entry on oeis.org

1, 10, 78, 560, 3884, 26520, 179752, 1214080, 8186256, 55152800, 371430368, 2500942080, 16837952704, 113358801280, 763153053312, 5137636904960, 34587001876736, 232842006858240, 1567506027294208, 10552536122060800, 71040228620135424
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008

Keywords

Comments

Third binomial transform of A054485. Fifth binomial transform of A162813 preceded by 1.
Lim_{n -> infinity} a(n)/a(n-1) = 5 + sqrt(3) = 6.73205080756887729....

Crossrefs

Cf. A002194 (decimal expansion of sqrt(3)), A054485, A162813.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((5+r)^n-(5-r)^n)/(2*r): n in [1..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008
    
  • Magma
    I:=[1,10]; [n le 2 select I[n] else 10*Self(n-1)-22*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 23 2016
    
  • Mathematica
    Table[Simplify[((5+Sqrt[3])^n -(5-Sqrt[3])^n)/(2*Sqrt[3])], {n,1,25}] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011, modified by G. C. Greubel, Jun 01 2019 *)
    LinearRecurrence[{10,-22},{1,10},25] (* G. C. Greubel, Aug 22 2016 *)
  • PARI
    my(x='x+O('x^25)); Vec(x/(1-10*x+22*x^2)) \\ G. C. Greubel, Jun 01 2019
  • Sage
    [lucas_number1(n,10,22) for n in range(1, 25)] # Zerinvary Lajos, Apr 26 2009
    

Formula

G.f.: x/(1 - 10*x + 22*x^2). - Klaus Brockhaus, Dec 31 2008 [corrected Oct 11 2009]
a(n) = 10*a(n-1) - 22*a(n-2) for n > 1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
E.g.f.: sinh(sqrt(3)*x)*exp(5*x)/sqrt(3). - Ilya Gutkovskiy, Aug 23 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Dec 31 2008
Edited by Klaus Brockhaus, Oct 11 2009

A176325 Decimal expansion of (5+3*sqrt(3))/2.

Original entry on oeis.org

5, 0, 9, 8, 0, 7, 6, 2, 1, 1, 3, 5, 3, 3, 1, 5, 9, 4, 0, 2, 9, 1, 1, 6, 9, 5, 1, 2, 2, 5, 8, 8, 0, 8, 5, 5, 0, 4, 1, 4, 2, 0, 7, 8, 8, 0, 7, 1, 5, 5, 7, 0, 9, 4, 2, 0, 8, 3, 7, 1, 0, 4, 6, 9, 1, 7, 7, 8, 9, 9, 5, 2, 5, 3, 6, 3, 2, 0, 0, 0, 5, 5, 6, 2, 1, 7, 1, 9, 2, 8, 0, 1, 3, 5, 8, 7, 2, 8, 6, 3, 5, 1, 3, 4, 3
Offset: 1

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of (5+3*sqrt(3))/2 is A010721.
a(n) = A104956(n) for n > 2.

Examples

			5.09807621135331594029...
		

Crossrefs

Cf. A002194 (decimal expansion of sqrt(3)), A104956 (decimal expansion of (3*sqrt(3))/2), A010721 (repeat 5, 10).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (5+3*Sqrt(3))/2; // G. C. Greubel, Dec 05 2019
    
  • Maple
    evalf( (5+3*sqrt(3))/2, 100); # G. C. Greubel, Dec 05 2019
  • Mathematica
    RealDigits[(5+3Sqrt[3])/2,10,120][[1]] (* Harvey P. Dale, May 20 2011 *)
  • PARI
    default(realprecision, 100); (5+3*sqrt(3))/2 \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    numerical_approx((5+3*sqrt(3))/2, digits=100) # G. C. Greubel, Dec 05 2019

A176461 Decimal expansion of sqrt(105).

Original entry on oeis.org

1, 0, 2, 4, 6, 9, 5, 0, 7, 6, 5, 9, 5, 9, 5, 9, 8, 3, 8, 3, 2, 2, 1, 0, 3, 8, 6, 8, 0, 5, 2, 1, 0, 5, 1, 9, 9, 0, 7, 3, 5, 0, 3, 2, 6, 6, 3, 4, 5, 4, 8, 3, 2, 9, 2, 9, 5, 4, 1, 9, 7, 8, 4, 9, 9, 8, 9, 0, 3, 4, 7, 9, 8, 5, 7, 0, 5, 3, 5, 4, 0, 7, 2, 9, 2, 7, 2, 3, 1, 6, 2, 8, 3, 7, 8, 5, 4, 6, 7, 3, 6, 9, 5, 4, 4
Offset: 2

Views

Author

Klaus Brockhaus, Apr 20 2010

Keywords

Comments

Continued fraction expansion of sqrt(105) is A040094.

Examples

			sqrt(105) = 10.24695076595959838322...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[105],10,120][[1]] (* Harvey P. Dale, Aug 03 2016 *)

A178230 Decimal expansion of sqrt(1086).

Original entry on oeis.org

3, 2, 9, 5, 4, 5, 1, 4, 1, 0, 6, 5, 6, 8, 1, 6, 2, 2, 3, 4, 8, 1, 8, 9, 8, 1, 0, 6, 4, 2, 2, 2, 3, 6, 2, 9, 1, 2, 1, 9, 5, 9, 4, 0, 4, 7, 5, 1, 1, 9, 7, 6, 4, 2, 0, 5, 5, 5, 8, 6, 3, 2, 5, 7, 5, 2, 8, 3, 8, 3, 3, 3, 2, 6, 5, 9, 1, 0, 7, 6, 9, 3, 6, 5, 6, 5, 9, 2, 0, 2, 0, 5, 4, 5, 1, 8, 7, 1, 2, 9, 0, 9, 2, 0, 8
Offset: 2

Views

Author

Klaus Brockhaus, May 23 2010

Keywords

Comments

Continued fraction expansion of sqrt(1086) is 32 followed by (repeat 1, 20, 1, 64).
sqrt(1086) = sqrt(2)*sqrt(3)*sqrt(181).

Examples

			sqrt(1086) = 32.95451410656816223481...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A002194 (decimal expansion of sqrt(3)), A178231 (decimal expansion of sqrt(181)), A178229 (decimal expansion of (221+11*sqrt(1086))/490).

A186691 Decimal expansion of Gamma(1+sqrt(3)).

Original entry on oeis.org

1, 5, 8, 5, 0, 0, 3, 6, 7, 2, 4, 8, 0, 3, 6, 8, 7, 3, 6, 6, 3, 6, 9, 9, 1, 1, 7, 3, 6, 5, 6, 5, 8, 9, 3, 4, 4, 3, 4, 1, 4, 1, 4, 7, 5, 4, 0, 2, 5, 3, 0, 7, 9, 1, 9, 9, 0, 7, 3, 8, 4, 7, 1, 5, 2, 0, 5, 6, 6, 9, 3, 5, 3, 6, 4, 9, 0, 0, 3, 2, 5, 6, 9, 3, 6, 2, 8, 2, 6, 4, 4, 0, 0, 2, 5, 3, 1, 0, 6, 7, 5, 1
Offset: 1

Views

Author

Keywords

Examples

			1.5850036724803687366369911736565893443414147540253..
		

Crossrefs

Programs

Previous Showing 91-100 of 218 results. Next