cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A366898 Number of divisors of n*2^n - 1, the Woodall (or Riesel) numbers.

Original entry on oeis.org

1, 2, 2, 6, 4, 2, 4, 4, 4, 4, 6, 4, 12, 10, 8, 48, 8, 4, 8, 4, 16, 16, 8, 8, 4, 8, 8, 16, 24, 2, 8, 4, 8, 32, 8, 32, 4, 8, 4, 24, 16, 8, 32, 8, 16, 24, 40, 16, 16, 8, 8, 16, 24, 8, 16, 8, 16, 6, 32, 8, 8, 16, 8, 512, 48, 16, 12, 48, 16, 8, 8, 4, 24, 16, 2, 256
Offset: 1

Views

Author

Tyler Busby, Oct 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, n*2^n - 1], {n, 1, 100}] (* Amiram Eldar, Dec 11 2023 *)
  • PARI
    a(n) = numdiv(n*2^n - 1); \\ Amiram Eldar, Dec 11 2023

Formula

a(n) = sigma0(n*2^n - 1) = A000005(A003261(n)).

A382811 Integers k such that d*2^k - 1 is prime for some divisor d of k.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 12, 13, 16, 17, 18, 19, 21, 28, 30, 31, 36, 42, 46, 54, 60, 61, 63, 75, 81, 88, 89, 99, 102, 104, 106, 107, 108, 115, 123, 126, 127, 132, 133, 204, 214, 216, 225, 249, 264, 270, 286, 304, 306, 324, 330, 342, 352, 362, 384, 390
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 15 2025

Keywords

Examples

			4 is in the sequence because 2*2^4 - 1 = 31 is prime for divisor d = 2 of k = 4.
		

Crossrefs

Supersequence of A000043, A002234.

Programs

  • Magma
    [k: k in [1..400] | not #[d: d in Divisors(k) | IsPrime(d*2^k-1)] eq 0];
    
  • Maple
    filter:= proc(k) ormap(d -> isprime(d*2^k-1),numtheory:-divisors(k)) end proc:
    select(filter, [$1..700]); # Robert Israel, Apr 25 2025
  • Mathematica
    q[k_] := AnyTrue[Divisors[k], PrimeQ[#*2^k - 1] &]; Select[Range[400], q] (* Amiram Eldar, Apr 16 2025 *)
  • PARI
    isok(k) = fordiv(k, d, if (ispseudoprime(d*2^k-1), return(1))); \\ Michel Marcus, Apr 16 2025

A367464 Numbers k such that k^5*2^k - 1 is a prime.

Original entry on oeis.org

2, 6, 9, 18, 42, 132, 139, 482, 523, 524, 859, 909, 948, 979, 1158, 1741, 2364, 3519, 4388, 5952, 6266, 8564, 12169, 14448, 54944, 103526, 116563, 125918
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 18 2023

Keywords

Crossrefs

Numbers k such that k^m*2^k - 1 is a prime: A000043 (m = 0), A002234 (m = 1), A058781 (m = 2), A367037 (m = 3), A367102 (m = 4), this sequence (m = 5).
Cf. A367421.

Programs

  • Magma
    [k: k in [1..1000] | IsPrime(k^5*2^k-1)];
  • Mathematica
    Select[Range[2500], PrimeQ[#^5*2^# - 1] &] (* Amiram Eldar, Nov 19 2023 *)

Extensions

a(24)-a(25) from Michael S. Branicky, Nov 18 2023
a(26)-a(28) from Michael S. Branicky, Aug 26 2024

A367478 Numbers k such that k^6*2^k - 1 is a prime.

Original entry on oeis.org

37, 43, 167, 217, 239, 349, 581, 1297, 5183, 9119, 10589, 15205, 18745, 25687, 26609, 33667, 35663, 73603, 82501, 89269
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 19 2023

Keywords

Crossrefs

Numbers k such that k^m*2^k - 1 is a prime: A000043 (m = 0), A002234 (m = 1), A058781 (m = 2), A367037 (m = 3), A367102 (m = 4), A367464 (m = 5), this sequence (m = 6).

Programs

  • Magma
    [k: k in [1..1000] | IsPrime(k^6*2^k-1)];
  • Mathematica
    Select[Range[6000], PrimeQ[#^6*2^# - 1] &] (* Amiram Eldar, Nov 19 2023 *)

Extensions

a(12) inserted by and a(14)-a(17) from Michael S. Branicky, Nov 19 2023
a(18)-a(20) from Michael S. Branicky, Nov 21 2023

A210340 Generalized Woodall primes: any primes that can be written in the form n*b^n - 1 with n+2 > b > 2.

Original entry on oeis.org

17, 191, 4373, 5119, 524287, 590489, 3124999, 14680063, 3758096383, 6973568801, 34867844009, 85449218749, 824633720831, 1099999999999, 1618481116086271, 11577835060199423, 14999999999999999, 29311444762388081, 73123168801259519
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 20 2012

Keywords

Examples

			167*2^668 - 1 is a prime number and 167*2^668 - 1 = 167*16^167 - 1, so this number is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = n*b^n - 1; If[p < 10^200 && PrimeQ[p], AppendTo[lst, p]], {b, 3, 100}, {n, b - 1, 413}]; Sort@lst

A242115 Woodall semiprimes: Semiprimes of the form n*2^n - 1.

Original entry on oeis.org

159, 895, 2047, 4607, 10239, 49151, 4718591, 20971519, 838860799, 137438953471, 5085241278463, 21440476741631, 340010386766614455386111, 96714065569170333976494079, 3288278229351791355200798719, 111414603535684224740921180159, 15370263527767281493147526365183
Offset: 1

Views

Author

K. D. Bajpai, May 04 2014

Keywords

Comments

The n-th Woodall number is Wn = n*2^n - 1.
If Wn is semiprime, it is in the sequence.

Examples

			a(1) = 159 = (5*2^5 - 1) is 5th Woodall number and 159 = 3*53 which is semiprime.
a(2) = 895 = (7*2^7 - 1) is 7th Woodall number and 895 = 5*179 which is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A242115:= proc(); if bigomega(x*2^x-1)=2 then RETURN (x*2^x-1); fi; end: seq(A242115 (),x=1..200);
  • Mathematica
    Select[Table[n*2^n-1,{n,100}],PrimeOmega[#]==2&] (* Harvey P. Dale, Jan 03 2019 *)
  • PARI
    for(n=1, 1000, if(bigomega(n*2^n-1)==2, print1(n*2^n-1, ", "))) \\ Colin Barker, May 07 2014

Formula

a(n) = A003261(A242273(n)). - Amiram Eldar, Nov 27 2019

A367561 Numbers k such that k^7*2^k - 1 is a prime.

Original entry on oeis.org

6, 45, 55, 80, 135, 187, 205, 384, 405, 1291, 1364, 2301, 2486, 2844, 16892, 27308, 30152, 32535, 45324, 71522, 72865
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 22 2023

Keywords

Comments

No further terms <= 100000. - Michael S. Branicky, Aug 28 2024

Crossrefs

Numbers k such that k^m*2^k - 1 is a prime: A000043 (m = 0), A002234 (m = 1), A058781 (m = 2), A367037 (m = 3), A367102 (m = 4), A367464 (m = 5), A367478 (m = 6), this sequence (m = 7).
Cf. A367560.

Programs

  • Magma
    [k: k in [1..4000] | IsPrime(k^7*2^k-1)];
  • Mathematica
    Select[Range[3000], PrimeQ[#^7*2^# - 1] &] (* Amiram Eldar, Nov 23 2023 *)

Extensions

a(16)-a(21) from Michael S. Branicky, Nov 23 2023

A382646 Numbers k such that (k*2^d - 1)*(d*2^k - 1) is semiprime for some divisor d of k.

Original entry on oeis.org

2, 3, 6, 7, 12, 18, 19, 21, 30, 31, 42, 60, 75, 81, 115, 123, 126, 132, 133, 225, 249, 306, 324, 362, 384, 462, 468, 512, 606, 607, 612, 751, 822, 1279, 2170, 2202, 2281, 5312, 7755, 9531, 12379, 14898, 15822, 18123, 18819, 18885, 22971, 23005, 23208, 41628, 44497, 51384, 52540, 98726
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 01 2025

Keywords

Comments

No further terms <= 10^5. - Michael S. Branicky, Apr 07 2025

Examples

			7 is in this sequence because (7*2^1-1)*(1*2^7-1) = 13*127 is semiprime for divisor 1 of 7.
		

Crossrefs

Supersequence of A002234.

Programs

  • Magma
    [n: n in [1..1000] | not #[d: d in Divisors(n) | IsPrime(d*2^n-1) and IsPrime(n*2^d-1)] eq 0];
    
  • PARI
    isok(k) = fordiv(k, d, if (ispseudoprime(k*2^d - 1) && ispseudoprime(d*2^k - 1), return(1))); \\ Michel Marcus, Apr 02 2025
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisors
    def A382646_gen(): # generator of terms
        yield from filter(lambda k:any(isprime((k<A382646_list = list(islice(A382646_gen(), 30)) # Chai Wah Wu, Apr 15 2025

Extensions

a(40) from Michel Marcus, Apr 02 2025
a(41)-a(54) from Michael S. Branicky, Apr 07 2025

A099051 p*2^p - 1 where p is prime.

Original entry on oeis.org

7, 23, 159, 895, 22527, 106495, 2228223, 9961471, 192937983, 15569256447, 66571993087, 5085241278463, 90159953477631, 378231999954943, 6614661952700415, 477381560501272575, 34011184385901985791
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 13 2004

Keywords

Comments

This is the subset of Woodall numbers of prime index. The 9th largest known Woodall prime is in this sequence: 12379*2^12379-1, where 12379 is prime, as found by Wilfrid Keller in 1984. Smaller primes are when p = 2, 3, 751. These numbers can also be semiprime, as when p = 159, 163, or 211 and hard to factor as when n = 349 (108 digits). - Jonathan Vos Post, Nov 19 2004

Examples

			If p=3, 3*2^3 - 1 = 23.
If p=11, 11*2^11 - 1 = 22527.
		

References

  • Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 360-361, 1996

Crossrefs

Similar to Woodall numbers (A003261). Cf. A002234.

Programs

  • Mathematica
    Table[ Prime[n]*2^Prime[n] - 1, {n, 17}] (* Robert G. Wilson v, Nov 16 2004 *)

Extensions

More terms from Robert G. Wilson v, Nov 15 2004

A137811 Number of digits in the n-th Woodall prime.

Original entry on oeis.org

1, 2, 3, 11, 25, 27, 37, 40, 78, 112, 119, 142, 157, 229, 251, 1603, 2339, 2874, 3731, 4768, 5690, 6920, 6930, 29725, 43058, 45468, 200815, 359799, 382007, 441847, 606279, 712818, 1129757, 5122515
Offset: 1

Views

Author

Ant King, Feb 12 2008

Keywords

Comments

Woodall primes are prime numbers of the form k*2^k-1.

Examples

			As the sixth Woodall prime is a 27-digit number, we have a(6)= 27
		

Crossrefs

Programs

  • Mathematica
    IntegerLength/@Select[Table[n 2^n-1,{n,10000}],PrimeQ] (* The program generates the first 18 terms of the sequence. *) (* Harvey P. Dale, Feb 05 2023 *)

Formula

a(n) = A055642(A050918(n)).

Extensions

a(28)-a(34) from Amiram Eldar, Jul 19 2025
Previous Showing 21-30 of 35 results. Next