cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A282946 Numbers k such that 5*2^k + 1 is a prime factor of a generalized Fermat number 11^(2^m) + 1 for some m.

Original entry on oeis.org

15, 1947, 125413, 240937
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 25 2017

Keywords

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = 5*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[11, p]], AppendTo[lst, n]], {n, 1, 1947, 2}]; lst

A322301 Primes p such that 5*2^p + 1 is also prime.

Original entry on oeis.org

3, 7, 13, 127, 3313, 23473, 819739
Offset: 1

Views

Author

Vincenzo Librandi, Dec 19 2018

Keywords

Comments

Primes in A002254.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo (10000) | IsPrime(5*2^p+1)];
  • Maple
    select(p->isprime(p) and isprime(5*2^p+1),[$0..5000]); # Muniru A Asiru, Dec 19 2018
  • Mathematica
    Select[Prime[Range[4000]], PrimeQ[5 2^# + 1] &]

A381815 Smallest k>1 such that 10*k^(3*2^n)+1 is prime.

Original entry on oeis.org

3, 2, 2, 2, 138, 24, 695, 107, 250, 404, 4657, 2185, 27931
Offset: 0

Views

Author

Jakub Buczak, Mar 07 2025

Keywords

Examples

			a(0) = 3, because 10*3^(3*2^0)+1 equals 271 which is prime.
a(1) = 2, because 10*2^(3*2^1)+1 equals 641 which is prime.
		

Crossrefs

Programs

  • Python
    from sympy import isprime
    from itertools import count
    def a(n): return next(k for k in count(2) if isprime(k**(3*(2**n)) * 10 + 1))

Extensions

a(10)-a(11) from Michael S. Branicky, Mar 07 2025
a(12) from Georg Grasegger, Apr 15 2025

A346542 Numbers k such that 5*2^k + 1 is an elite prime (A102742).

Original entry on oeis.org

3, 15, 55, 26607, 209787, 819739
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 16 2021

Keywords

Comments

An integer k is in this sequence if and only if there is no solution to the congruence x^2 == 2^(2^k) + 1 (mod p), where p is a prime of the form 5*2^k + 1.
a(7) > 9*10^6.

Crossrefs

Subsequence of A002254.
Cf. A102742.

Programs

  • PARI
    isok(k)=my(p=5*2^k+1); k>2 && Mod(k, 2)==1 && Mod(3, p)^((p-1)/2)+1==0 && kronecker(lift(Mod(2, p)^2^k)+1, p)==-1;

A361076 Array, read by ascending antidiagonals, whose n-th row consists of the powers of 2, if n = 1; of the primes of the form (2*n-1)*2^k+1, if they exist and n > 1; and of zeros otherwise.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 3, 5, 8, 1, 4, 7, 6, 16, 1, 2, 6, 13, 8, 32, 2, 3, 3, 14, 15, 12, 64, 1, 8, 5, 6, 20, 25, 18, 128, 3, 2, 10, 7, 7, 26, 39, 30, 256, 6, 15, 4, 20, 19, 11, 50, 55, 36, 512, 1, 10, 27, 9, 28, 21, 14, 52, 75, 41, 1024, 1, 4, 46, 51, 10, 82, 43, 17, 92, 85, 66, 2048
Offset: 1

Views

Author

Keywords

Comments

Is a(n) <= A279709(n)?

Examples

			Table starts
  1   2   4   8  16  32  64 128 ... A000079
  1   2   5   6   8  12  18  30 ... A002253
  1   3   7  13  15  25  39  55 ... A002254
  2   4   6  14  20  26  50  52 ... A032353
  1   2   3   6   7  11  14  17 ... A002256
  1   3   5   7  19  21  43  81 ... A002261
  2   8  10  20  28  82 188 308 ... A032356
  1   2   4   9  10  12  27  37 ... A002258
  ...
(2*39279 - 1)*2^r + 1 is composite for every r > 0 (see comments from A046067), so the 39279th row is A000004, the zero sequence.
		

Crossrefs

Programs

  • PARI
    vk(k, nn) = if (k==1, return (vector(nn, i, 2^(i-1)))); my(v = vector(nn-k+1), nb=0, i=0, x); while (nb != nn-k+1, if (isprime((2*k-1)*2^i+1), nb++; v[nb] = i); i++;); v;
    lista(nn) = my(v=vector(nn, k, vk(k, nn))); my(w=List()); for (i=1, nn, for (j=1, i, listput(w, v[i-j+1][j]););); Vec(w); \\ Michel Marcus, Mar 03 2023

A377248 Numbers k such that 8191 * 2^k + 1 is prime.

Original entry on oeis.org

12, 20, 412, 712, 2092, 4704, 10176, 33396, 41124, 105604, 139780, 142924
Offset: 1

Views

Author

Arsen Vardanyan, Oct 21 2024

Keywords

Comments

8191 is the 5th Mersenne prime: 8191 = 2^13 - 1 (a term of A000668).

Examples

			12 is a term, because 8191 * 2^12 + 1 = 8191 * 4096 + 1 = 33550337 is prime. (also a term of A061644).
		

Crossrefs

Programs

  • PARI
    is(k) = isprime(8191 * 2^k + 1);

Extensions

a(8)-a(9) from Hugo Pfoertner, Oct 21 2024
a(10)-a(12) from Michael S. Branicky, Nov 05 2024
Previous Showing 11-16 of 16 results.