cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A010884 Period 5: repeat [1,2,3,4,5].

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130483(n)+n+1. - Hieronymus Fischer, Jun 08 2007
4115/33333 = 0.12345123451234512345... - Eric Desbiaux, Nov 03 2008

Crossrefs

Cf. A177038 (decimal expansion of (195+sqrt(65029))/314).

Programs

Formula

a(n) = 1 + (n mod 5). - Paolo P. Lava, Nov 21 2006
From Hieronymus Fischer, Jun 08 2007: (Start)
G.f.: (5*x^4+4*x^3+3*x^2+2*x+1)/(1-x^5) = (5*x^6-6*x^5+1)/((1-x^5)*(1-x)^2).
a(n) = A010874(n)+1. (End)
a(n) = a(n-5). - Wesley Ivan Hurt, Jan 15 2022

A332410 a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) with a(0)=0, a(1)=1, a(2)=3, a(3)=6, a(4)=11, a(5)=17, a(6)=24.

Original entry on oeis.org

0, 1, 3, 6, 11, 17, 24, 32, 41, 52, 64, 77, 91, 106, 123, 141, 160, 180, 201, 224, 248, 273, 299, 326, 355, 385, 416, 448, 481, 516, 552, 589, 627, 666, 707, 749, 792, 836, 881, 928, 976, 1025, 1075, 1126, 1179
Offset: 0

Views

Author

Paul Curtz, Feb 11 2020

Keywords

Comments

This sequence occurs twice as a linear spoke in the hexagonal spiral constructed from A002266:
17 17 17 17 17 18 18
16 11 11 11 11 12 12 18
16 11 6 6 7 7 7 12 18
16 10 6 3 3 3 3 7 12 18
16 10 6 3 1 1 1 4 7 12 19
16 10 6 2 0 0 0 1 4 8 13 19
15 10 5 2 0 0 1 4 8 13 19
15 10 5 2 2 2 4 8 13 19
15 9 5 5 5 4 8 13 19
15 9 9 9 9 8 13 20
15 14 14 14 14 14 20
a(-1-n) = 0, 1, 4, 8, 13, 19, 26, 35, 45, ... also occurs twice in the same spiral.
Difference table:
0, 1, 3, 6, 11, 17, 24, 32, 41, 52, ... = a(n)
1, 2, 3, 5, 6, 7, 8, 9, 11, 12, ... = A047256(n+1)
1, 1, 2, 1, 1, 1, 1, 2, 1, 1, ... = A130782.
There is no linear spoke with three copies in this spiral. Compare with the spiral illustrated in sequence A330707 and constructed from A002265 where the same spokes occur three times: A006578, A001859 and A077043, essentially. Strictly, three times from 1, 1, 1 for A006578, from 2, 2, 2 for A001859 and from 7, 7, 7 for A077043.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {0, 1, 3, 6, 11, 17, 24}, 45] (* Amiram Eldar, Feb 12 2020 *)
  • PARI
    concat(0, Vec(x*(1 + x)*(1 + x^2 + x^3) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^50))) \\ Colin Barker, Feb 11 2020, Apr 24 2020

Formula

a(8+n) - a(8-n) = 20*n.
G.f.: x*(1 + x)*(1 + x^2 + x^3) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Feb 11 2020

A343609 a(n) = floor(n/9).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10
Offset: 0

Views

Author

M. F. Hasler, May 19 2021

Keywords

Comments

Also: Nonnegative integers repeated 9 times (with natural offset 0).

Crossrefs

Cf. A004526 ([n/2]), A002264 ([n/3]), A002265 ([n/4]), A002266 ([n/5]), A152467 ([n/6]), A132270 ([(n-1)/7]), A132292 ([(n-1)/8]), A059995 ([n/10]), A344420 ([n/11]), A342696 ([n/12]).
Repunits A002275 = A343609 o A011557.

Programs

  • Maple
    A343609 := n -> iquo(n,9); # illustration: map( A343609, [$0..99] );
  • Mathematica
    A343609[n_] := Floor[n/9]
    a[n_] := Quotient[n, 9]; Array[a, 100, 0] (* Amiram Eldar, May 19 2021 *)
    LinearRecurrence[{1,0,0,0,0,0,0,0,1,-1},{0,0,0,0,0,0,0,0,0,1},100] (* Harvey P. Dale, Mar 01 2025 *)
  • PARI
    apply( A343609(n)=n\9, [0..99])

Formula

a(n) = A002264(A002264(n)).
a(n) = a(n-1) + a(n-9) - a(n-10), n > 9;
G.f.: x^9/(1 - x - x^9 + x^10).

A348388 Irregular triangle read by rows: T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.

Original entry on oeis.org

1, 2, 3, 1, 4, 1, 5, 2, 1, 6, 2, 1, 7, 3, 1, 1, 8, 3, 2, 1, 9, 4, 2, 1, 1, 10, 4, 2, 1, 1, 11, 5, 3, 2, 1, 1, 12, 5, 3, 2, 1, 1, 13, 6, 3, 2, 1, 1, 1, 14, 6, 4, 2, 2, 1, 1, 15, 7, 4, 3, 2, 1, 1, 1, 16, 7, 4, 3, 2, 1, 1, 1, 17, 8, 5, 3, 2, 2, 1, 1, 1, 18, 8, 5, 3, 2, 2, 1, 1, 1, 19, 9, 5, 4, 3, 2, 1, 1, 1, 1
Offset: 2

Views

Author

Wolfdieter Lang, Oct 31 2021

Keywords

Comments

This irregular triangle T(n, k) gives the number of multiples of number k, larger than k and not exceeding n, for k = 1, 2, ..., floor(n/2), for n >= 2. See A348389 for the array of these multiples.
The length of row n is floor(n/2) = A004526(n), for n >= 2.
The row sums give A002541(n). See the formula given there by Wesley Ivan Hurt, May 08 2016.
The columns give the k-fold repeated positive integers k, for k >= 1.

Examples

			The irregular triangle T(n, k) begins:
n\k   1 2 3 4 5 6 7 8 9 10 ...
------------------------------
2:    1
3:    2
4:    3 1
5:    4 1
6:    5 2 1
7:    6 2 1
8:    7 3 1 1
9:    8 3 2 1
10:   9 4 2 1 1
11:  10 4 2 1 1
12:  11 5 3 2 1 1
13:  12 5 3 2 1 1
14:  13 6 3 2 1 1 1
15:  14 6 4 2 2 1 1
16:  15 7 4 3 2 1 1 1
17:  16 7 4 3 2 1 1 1
18:  17 8 5 3 2 2 1 1 1
19:  18 8 5 3 2 2 1 1 1
20:  19 9 5 4 3 2 1 1 1  1
...
		

Crossrefs

Columns k (with varying offsets): A000027, A004526, A008620, A008621, A002266, A097992, ...

Programs

  • Mathematica
    T[n_, k_] := Floor[(n - k)/k]; Table[T[n, k], {n, 2, 20}, {k, 1, Floor[n/2]}] // Flatten (* Amiram Eldar, Nov 02 2021 *)
  • Python
    def A348388row(n): return [(n - k) // k for k in range(1, 1 + n // 2)]
    for n in range(2, 21): print(A348388row(n))  # Peter Luschny, Nov 05 2021

Formula

T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.
G.f. of column k: G(k, x) = x^(2*k)/((1 - x)*(1 - x^k)).

A010886 Period 7: repeat [1, 2, 3, 4, 5, 6, 7].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130485(n)+n+1. - Hieronymus Fischer, Jun 08 2007
Decimal expansion of 1234567/9999999 = 0.123456712345671234567... - Eric Desbiaux, Nov 03 2008

Crossrefs

Cf. A177160 (decimal expansion of (4502+sqrt(29964677))/6961).

Programs

Formula

a(n) = 1 + (n mod 7). - Paolo P. Lava, Nov 21 2006
a(n) = A010876(n) + 1. G.f.: (Sum_{k=0..6} (k+1)*x^k)/(1-x^7). Also (7*x^8-8*x^7+1)/((1-x^7)*(1-x)^2). - Hieronymus Fischer, Jun 08 2007
From Wesley Ivan Hurt, Jul 18 2016: (Start)
a(n) = a(n-7) for n>6.
a(n) = 1 - 6*floor(n/7) + Sum_{k=1..6} floor((n + k)/7). (End)

A131766 a(n) = A131668(n) - (2*n+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 18, 36, 54, 72, 180, 378, 576, 774, 972, 2970, 4968, 6966, 8964, 19962, 39960, 59958, 79956, 99954, 299952, 499950, 699948, 899946, 1999944, 3999942, 5999940, 7999938, 9999936, 29999934, 49999932, 69999930, 89999928, 199999926, 399999924, 599999922
Offset: 0

Views

Author

Paul Curtz, Oct 04 2007

Keywords

Comments

Digital sums: 9*A002266.

Crossrefs

Extensions

a(30) corrected and more terms from Georg Fischer, Jul 30 2025

A131871 a(n) = A131766(n) / 18.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 4, 10, 21, 32, 43, 54, 165, 276, 387, 498, 1109, 2220, 3331, 4442, 5553, 16664, 27775, 38886, 49997, 111108, 222219, 333330, 444441, 555552, 1666663, 2777774, 3888885, 4999996, 11111107, 22222218, 33333329, 44444440, 55555551, 166666662
Offset: 0

Views

Author

Paul Curtz, Oct 05 2007

Keywords

Crossrefs

Extensions

a(32) corrected and more terms from Georg Fischer, Jul 31 2025

A137935 a(n) = 5n + 26*floor(n/5).

Original entry on oeis.org

0, 5, 10, 15, 20, 51, 56, 61, 66, 71, 102, 107, 112, 117, 122, 153, 158, 163, 168, 173, 204, 209, 214, 219, 224, 255, 260, 265, 270, 275, 306, 311, 316, 321, 326, 357, 362, 367, 372, 377, 408, 413, 418, 423, 428, 459, 464, 469, 474, 479, 510, 515, 520, 525, 530, 561, 566
Offset: 0

Views

Author

William A. Tedeschi, Mar 06 2008

Keywords

Examples

			a(0) = 5(0) + 26*floor(0/5) = 0
a(3) = 5(3) + 26*floor(3/5) = 15
		

Crossrefs

Cf. A002266.

Programs

  • Maple
    seq(5*n + 26*floor(n/5), n=0..200); # Robert Israel, Apr 02 2017
  • Python
    a = lambda n: 5*n + 26*floor(n/5)

Formula

a(n) = 5n + 26*floor(n/5) = 5n + 26*A002266(n)
G.f.: (5*x+5*x^2+5*x^3+5*x^4+31*x^5)/(1-x-x^5+x^6). - Robert Israel, Apr 02 2017

A175884 Numbers that are congruent to {0, 2, 4, 7, 9} mod 12.

Original entry on oeis.org

0, 2, 4, 7, 9, 12, 14, 16, 19, 21, 24, 26, 28, 31, 33, 36, 38, 40, 43, 45, 48, 50, 52, 55, 57, 60, 62, 64, 67, 69, 72, 74, 76, 79, 81, 84, 86, 88, 91, 93, 96, 98, 100, 103, 105, 108, 110, 112, 115, 117, 120, 122, 124, 127, 129, 132, 134, 136, 139, 141, 144, 146, 148, 151
Offset: 1

Views

Author

Bill Shillito (DMAshura(AT)gmail.com), Oct 08 2010

Keywords

Comments

Key-numbers of the pitches of a major pentatonic scale on a standard chromatic keyboard, with root = 0.
The pentatonic scale can also be obtained by omitting the 4th and 7th notes from the diatonic scale, so a(n) = A083026(A032796(n)). - Federico Provvedi, Sep 10 2022

Crossrefs

Subset of A083026 with exact index A032796.

Programs

  • GAP
    Filtered([0..151],n->n mod 12 = 0 or n mod 12 = 2 or n mod 12 = 4 or n mod 12 = 7 or n mod 12 = 9); # Muniru A Asiru, Oct 24 2018
  • Magma
    [Floor(12*(n-1)/5): n in [1..100]]; // G. C. Greubel, Oct 23 2018
    
  • Maple
    seq(floor(12*(n-1)/5),n=1..65); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    fQ[n_] := MemberQ[{0, 2, 4, 7, 9}, Mod[n, 12]]; Select[ Range[0, 152], fQ] (* Robert G. Wilson v, Oct 09 2010 *)
    Table[2n-1+Floor[(n-4)/5]+Floor[(n-1)/5],{n, 100}] (* Federico Provvedi, Jan 13 2018 *)
    Quotient[12(Range[100]-1), 5] (* Federico Provvedi, Oct 19 2018 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,1,0,0,0,1]^n*[0;2;4;7;9;12])[1,1] \\ for offset 0; Charles R Greathouse IV, Jul 06 2017
    
  • PARI
    vector(100, n, floor(12*(n-1)/5)) \\ G. C. Greubel, Oct 23 2018
    

Formula

G.f.: x^2*(2 + 2*x + 3*x^2 + 2*x^3 + 3*x^4) / ((x^4 + x^3 + x^2 + x + 1)*(x-1)^2). - R. J. Mathar, Jul 10 2015
a(n) = 2*n - 1 + floor((n-4)/5) + floor((n-1)/5). - Federico Provvedi, Jan 13 2018
a(n) = floor(12*(n-1)/5). - Federico Provvedi, Oct 19 2018
a(n) = A005843(n) + A057354(n). - Federico Provvedi, Sep 10 2022

Extensions

Offset change by G. C. Greubel, Oct 23 2018

A008381 floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 16, 24, 36, 54, 81, 81, 108, 144, 192, 256, 256, 320, 400, 500, 625, 625, 750, 900, 1080, 1296, 1296, 1512, 1764, 2058, 2401, 2401, 2744, 3136, 3584, 4096, 4096, 4608, 5184, 5832
Offset: 0

Views

Author

Keywords

Formula

a(n) = A002266(n)*A008496(n+1). a(n)= +a(n-1) +4*a(n-5) -4*a(n-6) -6*a(n-10) +6*a(n-11) +4*a(n-15) -4*a(n-16) -a(n-20) +a(n-21). G.f.: x^5*(x^10-2*x^9+4*x^8-4*x^7+8*x^6-8*x^5+8*x^4-4*x^3+4*x^2-2*x+1) * (1+x)^2 / ((x^4+x^3+x^2+x+1)^4 * (1-x)^5). [From R. J. Mathar, Apr 16 2010]
Previous Showing 41-50 of 53 results. Next