cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A002281 a(n) = 7*(10^n - 1)/9.

Original entry on oeis.org

0, 7, 77, 777, 7777, 77777, 777777, 7777777, 77777777, 777777777, 7777777777, 77777777777, 777777777777, 7777777777777, 77777777777777, 777777777777777, 7777777777777777, 77777777777777777, 777777777777777777, 7777777777777777777, 77777777777777777777, 777777777777777777777
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A178634(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 7*10^(n-1) with n>0, a(0)=0.
a(n) = 11*a(n-1) - 10*a(n-2) with n>1, a(0)=0, a(1)=7. (End)
G.f.: 7*x/((x-1)*(10*x-1)). - Colin Barker, Jan 24 2013
a(n) = 7*A002275(n). - Wesley Ivan Hurt, Mar 24 2015
E.g.f.: 7*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A099915(n) - 1)/2.
a(n) = A010785(A017245(n-1)) for n >= 1. (End)

A002278 a(n) = 4*(10^n - 1)/9.

Original entry on oeis.org

0, 4, 44, 444, 4444, 44444, 444444, 4444444, 44444444, 444444444, 4444444444, 44444444444, 444444444444, 4444444444444, 44444444444444, 444444444444444, 4444444444444444, 44444444444444444, 444444444444444444, 4444444444444444444, 44444444444444444444, 444444444444444444444
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A075415(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 4*10^(n-1) with a(0)=0;
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=4. (End)
G.f.: 4*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 4*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
a(n) = A007091(A024049(n)). - Michel Marcus, Jun 16 2024
From Elmo R. Oliveira, Jul 19 2025: (Start)
a(n) = 4*A002275(n).
a(n) = A010785(A017209(n-1)) for n >= 1. (End)

A032834 Numbers with digits 3 and 4 only.

Original entry on oeis.org

3, 4, 33, 34, 43, 44, 333, 334, 343, 344, 433, 434, 443, 444, 3333, 3334, 3343, 3344, 3433, 3434, 3443, 3444, 4333, 4334, 4343, 4344, 4433, 4434, 4443, 4444, 33333, 33334, 33343, 33344, 33433, 33434, 33443, 33444, 34333, 34334
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A032829-A032833 (in other bases), A102659 (Lyndon words in this sequence), A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9).

Programs

  • Magma
    [n: n in [1..35000] | Set(IntegerToSequence(n, 10)) subset {3, 4}]; // Vincenzo Librandi, May 30 2012
    
  • Maple
    S[1]:= [3,4]:
    for d from 2 to 5 do S[d]:= map(t -> (10*t+3,10*t+4), S[d-1]) od:
    seq(op(S[d]),d=1..5); # Robert Israel, Apr 03 2017
  • Mathematica
    Flatten[Table[FromDigits[#,10]&/@Tuples[{3,4},n],{n,5}]] (* Vincenzo Librandi, May 30 2012 *)
  • PARI
    A032834(n)=vector(#n=binary(n+1)[2..-1],i,10^(#n-i))*n~+10^#n\3 \\ M. F. Hasler, Mar 27 2015

Formula

a(n) = A007931(n) + A002276(A000523(n+1)) = A032810(n) + A256077(n) etc. - M. F. Hasler, Mar 27 2015
From Robert Israel, Apr 03 2017: (Start)
a(2*n+1) = 10*a(n)+3.
a(2*n+2) = 10*a(n)+4.
G.f. g(x) satisfies g(x) = 10*(x+x^2)*g(x^2) + x*(3+4*x)/(1-x^2). (End)

Extensions

Crossrefs added by M. F. Hasler, Mar 27 2015
Name corrected by Robert Israel, Apr 03 2017

A332120 a(n) = 2*(10^(2n+1)-1)/9 - 2*10^n.

Original entry on oeis.org

0, 202, 22022, 2220222, 222202222, 22222022222, 2222220222222, 222222202222222, 22222222022222222, 2222222220222222222, 222222222202222222222, 22222222222022222222222, 2222222222220222222222222, 222222222222202222222222222, 22222222222222022222222222222, 2222222222222220222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332130 .. A332190 (variants with different repeated digit 3, ..., 9).
Cf. A332121 .. A332129 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332120 := n -> 2*((10^(2*n+1)-1)/9-10^n);
  • Mathematica
    Array[2 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
  • PARI
    apply( {A332120(n)=(10^(n*2+1)\9-10^n)*2}, [0..15])
    
  • Python
    def A332120(n): return (10**(n*2+1)//9-10**n)*2

Formula

a(n) = 2*A138148(n) = A002276(2n+1) - 2*10^n.
G.f.: 2*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: 2*exp(x)*(10*exp(99*x) - 9*exp(9*x) - 1)/9. - Stefano Spezia, Jul 13 2024

A178630 a(n) = 18*((10^n - 1)/9)^2.

Original entry on oeis.org

18, 2178, 221778, 22217778, 2222177778, 222221777778, 22222217777778, 2222222177777778, 222222221777777778, 22222222217777777778, 2222222222177777777778, 222222222221777777777778, 22222222222217777777777778, 2222222222222177777777777778, 222222222222221777777777777778
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 18 = 9 * 2;
n=2: ................... 2178 = 99 * 22;
n=3: ................. 221778 = 999 * 222;
n=4: ............... 22217778 = 9999 * 2222;
n=5: ............. 2222177778 = 99999 * 22222;
n=6: ........... 222221777778 = 999999 * 222222;
n=7: ......... 22222217777778 = 9999999 * 2222222;
n=8: ....... 2222222177777778 = 99999999 * 22222222;
n=9: ..... 222222221777777778 = 999999999 * 222222222.
		

Crossrefs

Programs

Formula

a(n) = 18*A002477(n) = A002283(n)*A002276(n).
a(n)=((A002276(n-1)*10 + 1)*10^(n-1) + A002281(n-1))*10 + 8.
G.f.: 18*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
From Elmo R. Oliveira, Jul 30 2025: (Start)
E.g.f.: 2*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. (End)

A178634 a(n) = 63*((10^n - 1)/9)^2.

Original entry on oeis.org

63, 7623, 776223, 77762223, 7777622223, 777776222223, 77777762222223, 7777777622222223, 777777776222222223, 77777777762222222223, 7777777777622222222223, 777777777776222222222223, 77777777777762222222222223, 7777777777777622222222222223, 777777777777776222222222222223
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 63 = 9 * 7;
n=2: ................... 7623 = 99 * 77;
n=3: ................. 776223 = 999 * 777;
n=4: ............... 77762223 = 9999 * 7777;
n=5: ............. 7777622223 = 99999 * 77777;
n=6: ........... 777776222223 = 999999 * 777777;
n=7: ......... 77777762222223 = 9999999 * 7777777;
n=8: ....... 7777777622222223 = 99999999 * 77777777;
n=9: ..... 777777776222222223 = 999999999 * 777777777.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 33 at p. 62.
  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.

Crossrefs

Programs

  • GAP
    List([1..20], n -> 63*((10^n - 1)/9)^2); # G. C. Greubel, Jan 28 2019
  • Magma
    [63*((10^n - 1)/9)^2: n in [1..20]]; // Vincenzo Librandi, Dec 28 2010
    
  • Mathematica
    63((10^Range[15]-1)/9)^2 (* or *) Table[FromDigits[Join[PadRight[{},n,7],{6},PadRight[{},n,2],{3}]],{n,0,15}] (* Harvey P. Dale, Apr 23 2012 *)
  • PARI
    a(n)=63*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
    
  • Sage
    [63*((10^n - 1)/9)^2 for n in (1..20)] # G. C. Greubel, Jan 28 2019
    

Formula

a(n) = 63*A002477(n) = A002283(n)*A002281(n).
a(n) = ((A002281(n-1)*10 + 6)*10^(n-1) + A002276(n-1))*10 + 3.
G.f.: 63*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 7*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9. - Stefano Spezia, Jul 31 2024
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. - Elmo R. Oliveira, Aug 01 2025

A332121 a(n) = 2*(10^(2n+1)-1)/9 - 10^n.

Original entry on oeis.org

1, 212, 22122, 2221222, 222212222, 22222122222, 2222221222222, 222222212222222, 22222222122222222, 2222222221222222222, 222222222212222222222, 22222222222122222222222, 2222222222221222222222222, 222222222222212222222222222, 22222222222222122222222222222, 2222222222222221222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).
Cf. A332131 .. A332191 (variants with different repeated digit 3, ..., 9).

Programs

  • Maple
    A332121 := n -> 2*(10^(2*n+1)-1)/9-10^n;
  • Mathematica
    Array[2 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
  • PARI
    apply( {A332121(n)=10^(n*2+1)\9*2-10^n}, [0..15])
    
  • Python
    def A332121(n): return 10**(n*2+1)//9*2-10**n

Formula

a(n) = 2*A138148(n) + 1*10^n = A002276(2n+1) - 10^n.
G.f.: (1 + 101*x - 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332129 a(n) = 2*(10^(2n+1)-1)/9 + 7*10^n.

Original entry on oeis.org

9, 292, 22922, 2229222, 222292222, 22222922222, 2222229222222, 222222292222222, 22222222922222222, 2222222229222222222, 222222222292222222222, 22222222222922222222222, 2222222222229222222222222, 222222222222292222222222222, 22222222222222922222222222222, 2222222222222229222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332119 .. A332189 (variants with different repeated digit 1, ..., 8).
Cf. A332120 .. A332128 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332129 := n -> 2*(10^(2*n+1)-1)/9+7*10^n;
  • Mathematica
    Array[2 (10^(2 # + 1)-1)/9 + 7*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{9,292,22922},20] (* Harvey P. Dale, Jun 25 2020 *)
  • PARI
    apply( {A332129(n)=10^(n*2+1)\9*2+7*10^n}, [0..15])
    
  • Python
    def A332129(n): return 10**(n*2+1)//9*2+7*10**n

Formula

a(n) = 2*A138148(n) + 9*10^n = A002276(2n+1) + 7*10^n.
G.f.: (9 - 707*x + 500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A086066 a(n) = Sum_{d in D(n)} 2^d, where D(n) = set of digits of n in decimal representation.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 2, 6, 10, 18, 34, 66, 130, 258, 514, 5, 6, 4, 12, 20, 36, 68, 132, 260, 516, 9, 10, 12, 8, 24, 40, 72, 136, 264, 520, 17, 18, 20, 24, 16, 48, 80, 144, 272, 528, 33, 34, 36, 40, 48, 32, 96, 160, 288, 544, 65, 66, 68, 72, 80
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 08 2003

Keywords

Comments

For bitwise logical operations AND and OR:
a(m) = (a(m) AND a(n)) iff D(m) is a subset of D(n),
(a(m) AND a(n)) = 0 iff D(m) and D(n) are disjoint,
a(m) = (a(m) OR a(n)) iff D(n) is a subset of D(m),
a(m) = a(n) iff D(m) = D(n);
A086067(n) = A007088(a(n)).
From Reinhard Zumkeller, Sep 18 2009: (Start)
a(A052382(n)) mod 2 = 0; a(A011540(n)) mod 2 = 1;
for n > 0: a(A000004(n))=1, a(A000042(n))=2, a(A011557(n))=3, a(A002276(n))=4, a(A111066(n))=6, a(A002277(n))=8, a(A002278(n))=16, a(A002279(n))=32, a(A002280(n))=64, a(A002281(n))=128, a(A002282(n))=256, a(A002283(n))=512;
a(n) <= 1023. (End)

Examples

			n=242, D(242) = {2,4}: a(242) = 2^2 + 2^4 = 20.
		

Programs

  • Maple
    A086066 := proc(n) local d: if(n=0)then return 1: fi: d:=convert(convert(n,base,10),set): return add(2^d[j],j=1..nops(d)): end: seq(A086066(n),n=0..64); # Nathaniel Johnston, May 31 2011

A180592 Digital root of 2n.

Original entry on oeis.org

0, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1
Offset: 0

Views

Author

Odimar Fabeny, Sep 10 2010

Keywords

Comments

Period 9. - Robert G. Wilson v, Sep 20 2010
Also digital root of A002276(n). - Enrique Pérez Herrero, Nov 05 2022

Crossrefs

Programs

Formula

From R. J. Mathar, Nov 02 2010: (Start)
a(n) = A010888(2*n).
a(n) = a(n-9), n > 9.
G.f.: -x*(2 + 4*x + 6*x^2 + 8*x^3 + x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 9*x^8) / ( (x-1)*(1 + x + x^2)*(x^6 + x^3 + 1) ). (End)

Extensions

More terms from Robert G. Wilson v, Sep 20 2010
Keyword:base and formulas from R. J. Mathar, Nov 02 2010
Previous Showing 11-20 of 43 results. Next