cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A358599 Number of genetic relatives of a person M in a genealogical tree extending back n generations and where everyone has 5 children down to the generation of M.

Original entry on oeis.org

1, 7, 59, 563, 5571, 55587, 555619, 5555683, 55555811, 555556067, 5555556579, 55555557603, 555555559651, 5555555563747, 55555555571939, 555555555588323, 5555555555621091, 55555555555686627, 555555555555817699, 5555555555556079843, 55555555555556604131
Offset: 0

Views

Author

Hans Braxmeier, Nov 23 2022

Keywords

Comments

M has 2 parents, 4 grandparents, and so on up to 2^n top ancestors at the top of the tree.
The genetic relatives of M are all descendants of those ancestors.
M is a genetic relative of himself or herself.

Crossrefs

Other numbers of children: A076024 (2), A358504 (3), A358598 (4), A358600 (6), A358601 (7).

Programs

  • Mathematica
    LinearRecurrence[{13, -32, 20}, {1, 7, 59}, 21] (* Hugo Pfoertner, Dec 05 2022 *)
  • Python
    print([2**n+5*(10**n-1)//9 for n in range(10)])

Formula

a(n) = 2^n + 5*(10^n - 1)/9.
a(n) = A000079(n) + A002279(n).
G.f.: (6*x-1)/((x-1)*(2*x-1)*(10*x-1)). - Alois P. Heinz, Dec 05 2022
a(n) = 13*a(n-1) - 32*a(n-2) + 20*a(n-3). - Wesley Ivan Hurt, Jun 19 2025

A093135 Expansion of g.f. (1-8*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 3, 23, 223, 2223, 22223, 222223, 2222223, 22222223, 222222223, 2222222223, 22222222223, 222222222223, 2222222222223, 22222222222223, 222222222222223, 2222222222222223, 22222222222222223, 222222222222222223, 2222222222222222223, 22222222222222222223, 222222222222222222223
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Second binomial transform of 2*A001045(3*n)/3 + (-1)^n.
Partial sums of A093136.
A convex combination of 10^n and 1.
In general the second binomial transform of k*Jacobsthal(3*n)/3 + (-1)^n is 1, 1+k, 1+11*k, 1+111*k, ... This is the case for k=2.
Essentially the same as A091628 (cf. 2nd formula). - Georg Fischer, Oct 06 2018
a(n) is 3^n represented in bijective base-3 numeration. - Alois P. Heinz, Aug 26 2019

Crossrefs

Formula

a(n) = (2*10^n + 7)/9.
a(n) = 10*a(n-1) - 7 (with a(0)=1). - Vincenzo Librandi, Aug 02 2010
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: exp(x)*(7 + 2*exp(9*x))/9.
a(n) = 11*a(n-1) - 10*a(n-2).
a(n) = (A062397(n) - A002279(n))/2. (End)

Extensions

More terms from Elmo R. Oliveira, Apr 03 2025

A305322 Repdigit numbers that are divisible by 3.

Original entry on oeis.org

0, 3, 6, 9, 33, 66, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 3333, 6666, 9999, 33333, 66666, 99999, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 3333333, 6666666, 9999999, 33333333, 66666666, 99999999, 111111111, 222222222
Offset: 1

Views

Author

Kritsada Moomuang, May 30 2018

Keywords

Comments

The terms > 0 are (10^d-1)*k/9 for k=1..9 if d is divisible by 3, and for k=3,6,9 otherwise. - Robert Israel, Jun 01 2018
Repdigit remainders A010785(k) mod 3 have period 27. - Karl-Heinz Hofmann, Nov 11 2023

Examples

			111 / 3 = 37;
222 / 3 = 74;
333 / 3 = 111;
444 / 3 = 148;
555 / 3 = 185.
		

Crossrefs

Cf. A002279 (divisor 5), A366596 (divisor 7), A083118 (the impossible divisors).

Programs

  • Maple
    L:= proc(d) if d mod 3 = 0 then [$1..9] else [3,6,9] fi end proc:
    0,seq(seq((10^d-1)/9*k,k=L(d)),d=1..9); # Robert Israel, Jun 01 2018
  • Python
    def A010785(n): return (n - 9*((n-1)//9))*(10**((n+8)//9) - 1)//9
    def A305322(n):
        d0, d1 = divmod(n-1,15)
        if d1 < 7: return A010785(d0 * 27 + d1 * 3)
        return A010785(d0 * 27 + d1 + 12) # Karl-Heinz Hofmann, Nov 26 2023

Formula

From Alois P. Heinz, May 30 2018: (Start)
{ A008585 } intersect { A010785 }.
G.f.: 3*(300*x^20 + 200*x^19 + 100*x^18 + 330*x^17 + 220*x^16 + 110*x^15 + 333*x^14 + 296*x^13 + 259*x^12 + 222*x^11 + 185*x^10 + 148*x^9 + 111*x^8 + 74*x^7 + 37*x^6 + 33*x^5 + 22*x^4 + 11*x^3 + 3*x^2 + 2*x + 1)*x^2 / ((x-1) *(x^2 + x + 1) *(x^4 + x^3 + x^2 + x + 1) *(10*x^5-1) *(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1) *(100*x^10 + 10*x^5 + 1)).
a(n) = 1001*a(n-15) - 1000*a(n-30). (End)
From Karl-Heinz Hofmann, Nov 11 2023: (Start)
a(n) = A010785(floor((n-1)/15)*27 + ((n-1) mod 15)*3) iff (n-1 <= 6 (mod 15)).
a(n) = A010785(floor((n-1)/15)*27 + ((n-1) mod 15) + 12) iff (n-1 > 6 (mod 15)).
(End)

Extensions

Name clarified by Felix Fröhlich, Jun 01 2018

A366596 Repdigit numbers that are divisible by 7.

Original entry on oeis.org

0, 7, 77, 777, 7777, 77777, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 7777777, 77777777, 777777777, 7777777777, 77777777777, 111111111111, 222222222222, 333333333333, 444444444444, 555555555555, 666666666666, 777777777777
Offset: 1

Views

Author

Kritsada Moomuang, Oct 14 2023

Keywords

Comments

7 divides a repdigit iff it consists of only digit 7, or has length 6*k (for any digit).
Repdigit remainders A010785(k) mod 7 have period 54. - Karl-Heinz Hofmann, Dec 04 2023

Crossrefs

Intersection of A008589 and A010785.
Cf. A002281 (a subsequence).
Cf. A305322 (divisor 3), A002279 (divisor 5), A083118 (the impossible divisors).

Programs

  • PARI
    r(n) = 10^((n+8)\9)\9*((n-1)%9+1); \\ A010785
    lista(nn) = select(x->!(x%7), vector(nn, k, r(k-1))); \\ Michel Marcus, Oct 26 2023
    
  • Python
    def A366596(n):
        digitlen, digit = (n+12)//14*6, (n+12)%14-4
        if digit < 1: digitlen += digit - 1; digit = 7
        return 10**digitlen // 9 * digit # Karl-Heinz Hofmann, Dec 04 2023

Formula

From Karl-Heinz Hofmann, Dec 04 2023: (Start)
a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14) + 41), for (n-2) mod 14 > 4.
a(n) = (10^(6*floor((n-2)/14) + 6)-1)/9*(((n-2) mod 14)-4), for (n-2) mod 14 > 4.
a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14)*9 + 7), for (n-2) mod 14 <= 4.
a(n) = (10^(6*floor((n-2)/14) + 1 + ((n-2) mod 14))-1)/9*7, for (n-2) mod 14 <= 4.
(End)

A069881 Numbers n such that n and 2n+1 are both palindromes.

Original entry on oeis.org

1, 2, 3, 4, 5, 55, 151, 161, 171, 181, 191, 252, 262, 272, 282, 292, 353, 363, 373, 383, 393, 454, 464, 474, 484, 494, 555, 5555, 15051, 15151, 15251, 15351, 15451, 16061, 16161, 16261, 16361, 16461, 17071, 17171, 17271, 17371, 17471, 18081, 18181
Offset: 1

Views

Author

Amarnath Murthy, Apr 30 2002

Keywords

Comments

Note that any number with all digits = 5 (A002279) is part of this sequence. - Jim McCann (jmccann(AT)umich.edu), Jul 16 2002

Examples

			151 is a member as 2*151 + 1 = 303 is also a palindrome.
		

Crossrefs

Subsequence of A002113.

Programs

  • Mathematica
    isPalin[n_]:=(n==FromDigits[Reverse[IntegerDigits[n]]]); Do[m = 2 n + 1; If[isPalin[n]&&isPalin[m], Print[n]], {n, 1, 10^5}] (* Vincenzo Librandi, Jan 22 2018 *)
  • PARI
    isok(n) = (d=digits(n)) && (Vecrev(d)==d) && (dd=digits(2*n+1)) && (Vecrev(dd)==dd); \\ Michel Marcus, Jan 22 2018
  • Perl
    $a = 1; while((@b = split("|",$a) and @c = split("|",2*$a+1) and (join("", reverse(@b)) eq join("", @b) and join("", reverse(@c)) eq join("", @c) and eval("print \"\$a \"; return 0;"))) or ++$a) { }
    

Extensions

More terms from Jim McCann (jmccann(AT)umich.edu), Jul 16 2002

A332151 a(n) = 5*(10^(2*n+1)-1)/9 - 4*10^n.

Original entry on oeis.org

1, 515, 55155, 5551555, 555515555, 55555155555, 5555551555555, 555555515555555, 55555555155555555, 5555555551555555555, 555555555515555555555, 55555555555155555555555, 5555555555551555555555555, 555555555555515555555555555, 55555555555555155555555555555, 5555555555555551555555555555555
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332151 := n -> 5*(10^(2*n+1)-1)/9-4*10^n;
  • Mathematica
    Array[5 (10^(2 # + 1)-1)/9 - 4*10^# &, 15, 0]
    Table[With[{c=PadRight[{},n,5]},FromDigits[Join[c,{1},c]]],{n,0,20}] (* Harvey P. Dale, Mar 16 2021 *)
  • PARI
    apply( {A332151(n)=10^(n*2+1)\9*5-4*10^n}, [0..15])
    
  • Python
    def A332151(n): return 10**(n*2+1)//9*5-4*10**n

Formula

a(n) = 5*A138148(n) + 10^n = A002279(2n+1) - 4*10^n.
G.f.: (1 + 404*x - 900*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A365644 Array read by ascending antidiagonals: A(n, k) = k*(10^n - 1)/9 with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 11, 2, 0, 0, 111, 22, 3, 0, 0, 1111, 222, 33, 4, 0, 0, 11111, 2222, 333, 44, 5, 0, 0, 111111, 22222, 3333, 444, 55, 6, 0, 0, 1111111, 222222, 33333, 4444, 555, 66, 7, 0, 0, 11111111, 2222222, 333333, 44444, 5555, 666, 77, 8, 0
Offset: 0

Views

Author

Stefano Spezia, Sep 14 2023

Keywords

Examples

			The array begins:
  0,     0,     0,     0,     0,     0, ...
  0,     1,     2,     3,     4,     5, ...
  0,    11,    22,    33,    44,    55, ...
  0,   111,   222,   333,   444,   555, ...
  0,  1111,  2222,  3333,  4444,  5555, ...
  0, 11111, 22222, 33333, 44444, 55555, ...
  ...
		

Crossrefs

Cf. A000004 (n=0 or k=0), A001477 (n=1), A002275 (k=1), A002276 (k=2), A002277 (k=3), A002278 (k=4), A002279 (k=5), A002280 (k=6), A002281 (k=7), A002282 (k=8), A002283 (k=9), A008593 (n=2), A053422 (main diagonal), A105279 (k=10), A132583, A177769 (n=3), A365645 (antidiagonal sums), A365646.

Programs

  • Mathematica
    A[n_,k_]:=k(10^n-1)/9; Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten

Formula

O.g.f.: x*y/((1 - x)*(1 - 10*x)*(1 - y)^2).
E.g.f.: y*exp(x+y)*(exp(9*x) - 1)/9.
A(n, 11) = A132583(n-1) for n > 0.
A(n, 12) = A073551(n+1) for n > 0.

A173735 a(n) = (10^n + 26)/9.

Original entry on oeis.org

3, 4, 14, 114, 1114, 11114, 111114, 1111114, 11111114, 111111114, 1111111114, 11111111114, 111111111114, 1111111111114, 11111111111114, 111111111111114, 1111111111111114, 11111111111111114, 111111111111111114, 1111111111111111114, 11111111111111111114, 111111111111111111114
Offset: 0

Views

Author

Vincenzo Librandi, Feb 23 2010

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1) + 10^(n-1) = 10*a(n-1) - 26, a(0)=3.
a(n) = 11*a(n-1) - 10*a(n-2). - Vincenzo Librandi, Jul 05 2012
a(n) = 2*(A002279(n-1) + 2). - Martin Ettl, Nov 12 2012
G.f.: (3-29*x)/((1-x)*(1-10*x)). - Ivan Panchenko, Nov 05 2013
From Elmo R. Oliveira, Jun 18 2025: (Start)
E.g.f.: exp(x)*(26 + exp(9*x))/9.
a(n) = 2*A178769(n-1) for n >= 1. (End)

Extensions

a(0) from Ivan Panchenko, Nov 05 2013

A173737 (10^n+44)/9 for n>0.

Original entry on oeis.org

6, 16, 116, 1116, 11116, 111116, 1111116, 11111116, 111111116, 1111111116, 11111111116, 111111111116, 1111111111116, 11111111111116, 111111111111116, 1111111111111116, 11111111111111116, 111111111111111116
Offset: 1

Views

Author

Vincenzo Librandi, Feb 23 2010

Keywords

Programs

Formula

a(n) = a(n-1)+10^(n-1) = 10*a(n-1)-44 with n>0, a(0)=5.
G.f.: x*(6-50*x)/((1-x)*(1-10*x)). - Vincenzo Librandi, Jul 05 2012
a(n) = 11*a(n-1) -10*a(n-2) with a(0)=5, a(1)=6. - Vincenzo Librandi, Jul 05 2012
a(n) = (A002279(n-1)+3)*2. - Martin Ettl, Nov 08 2012

A205085 a(n) = n 5's sandwiched between two 1's.

Original entry on oeis.org

11, 151, 1551, 15551, 155551, 1555551, 15555551, 155555551, 1555555551, 15555555551, 155555555551, 1555555555551, 15555555555551, 155555555555551, 1555555555555551, 15555555555555551, 155555555555555551, 1555555555555555551, 15555555555555555551, 155555555555555555551
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A002279.

Programs

  • Magma
    I:=[11, 151]; [n le 2 select I[n] else 11*Self(n-1)-10*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Jan 23 2012
  • Mathematica
    a[0]=11;a[n_]:=a[n-1]*10+41;Table[a[n],{n,0,44}]
    LinearRecurrence[{11, -10}, {11, 151}, 50] (* Vincenzo Librandi, Jan 23 2012 *)
    Table[10FromDigits[PadRight[{1},n,5]]+1,{n,20}] (* Harvey P. Dale, May 02 2019 *)
  • PARI
    a(n)=(140*10^n-41)/9 \\ Charles R Greathouse IV, Jan 23 2012
    

Formula

a(0)=11, a(n) = 10*a(n-1) + 41.
a(n) = (140*10^n - 41)/9 (see PARI code by Charles R Greathouse IV).
a(n) = 11*a(n-1) - 10*a(n-2). - Vincenzo Librandi, Jan 23 2012
From Elmo R. Oliveira, Feb 18 2025: (Start)
G.f.: (11 + 30*x)/((1 - x)*(1 - 10*x)).
E.g.f.: exp(x)*(140*exp(9*x) - 41)/9. (End)
Previous Showing 21-30 of 40 results. Next