A358599
Number of genetic relatives of a person M in a genealogical tree extending back n generations and where everyone has 5 children down to the generation of M.
Original entry on oeis.org
1, 7, 59, 563, 5571, 55587, 555619, 5555683, 55555811, 555556067, 5555556579, 55555557603, 555555559651, 5555555563747, 55555555571939, 555555555588323, 5555555555621091, 55555555555686627, 555555555555817699, 5555555555556079843, 55555555555556604131
Offset: 0
-
LinearRecurrence[{13, -32, 20}, {1, 7, 59}, 21] (* Hugo Pfoertner, Dec 05 2022 *)
-
print([2**n+5*(10**n-1)//9 for n in range(10)])
A093135
Expansion of g.f. (1-8*x)/((1-x)*(1-10*x)).
Original entry on oeis.org
1, 3, 23, 223, 2223, 22223, 222223, 2222223, 22222223, 222222223, 2222222223, 22222222223, 222222222223, 2222222222223, 22222222222223, 222222222222223, 2222222222222223, 22222222222222223, 222222222222222223, 2222222222222222223, 22222222222222222223, 222222222222222222223
Offset: 0
A305322
Repdigit numbers that are divisible by 3.
Original entry on oeis.org
0, 3, 6, 9, 33, 66, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 3333, 6666, 9999, 33333, 66666, 99999, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 3333333, 6666666, 9999999, 33333333, 66666666, 99999999, 111111111, 222222222
Offset: 1
111 / 3 = 37;
222 / 3 = 74;
333 / 3 = 111;
444 / 3 = 148;
555 / 3 = 185.
- Robert Israel, Table of n, a(n) for n = 1..4996
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1000).
-
L:= proc(d) if d mod 3 = 0 then [$1..9] else [3,6,9] fi end proc:
0,seq(seq((10^d-1)/9*k,k=L(d)),d=1..9); # Robert Israel, Jun 01 2018
-
def A010785(n): return (n - 9*((n-1)//9))*(10**((n+8)//9) - 1)//9
def A305322(n):
d0, d1 = divmod(n-1,15)
if d1 < 7: return A010785(d0 * 27 + d1 * 3)
return A010785(d0 * 27 + d1 + 12) # Karl-Heinz Hofmann, Nov 26 2023
A366596
Repdigit numbers that are divisible by 7.
Original entry on oeis.org
0, 7, 77, 777, 7777, 77777, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 7777777, 77777777, 777777777, 7777777777, 77777777777, 111111111111, 222222222222, 333333333333, 444444444444, 555555555555, 666666666666, 777777777777
Offset: 1
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..2329
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,1000001,0,0,0,0,0,0,0,0,0,0,0,0,0,-1000000).
-
r(n) = 10^((n+8)\9)\9*((n-1)%9+1); \\ A010785
lista(nn) = select(x->!(x%7), vector(nn, k, r(k-1))); \\ Michel Marcus, Oct 26 2023
-
def A366596(n):
digitlen, digit = (n+12)//14*6, (n+12)%14-4
if digit < 1: digitlen += digit - 1; digit = 7
return 10**digitlen // 9 * digit # Karl-Heinz Hofmann, Dec 04 2023
A069881
Numbers n such that n and 2n+1 are both palindromes.
Original entry on oeis.org
1, 2, 3, 4, 5, 55, 151, 161, 171, 181, 191, 252, 262, 272, 282, 292, 353, 363, 373, 383, 393, 454, 464, 474, 484, 494, 555, 5555, 15051, 15151, 15251, 15351, 15451, 16061, 16161, 16261, 16361, 16461, 17071, 17171, 17271, 17371, 17471, 18081, 18181
Offset: 1
151 is a member as 2*151 + 1 = 303 is also a palindrome.
-
isPalin[n_]:=(n==FromDigits[Reverse[IntegerDigits[n]]]); Do[m = 2 n + 1; If[isPalin[n]&&isPalin[m], Print[n]], {n, 1, 10^5}] (* Vincenzo Librandi, Jan 22 2018 *)
-
isok(n) = (d=digits(n)) && (Vecrev(d)==d) && (dd=digits(2*n+1)) && (Vecrev(dd)==dd); \\ Michel Marcus, Jan 22 2018
-
$a = 1; while((@b = split("|",$a) and @c = split("|",2*$a+1) and (join("", reverse(@b)) eq join("", @b) and join("", reverse(@c)) eq join("", @c) and eval("print \"\$a \"; return 0;"))) or ++$a) { }
More terms from Jim McCann (jmccann(AT)umich.edu), Jul 16 2002
A332151
a(n) = 5*(10^(2*n+1)-1)/9 - 4*10^n.
Original entry on oeis.org
1, 515, 55155, 5551555, 555515555, 55555155555, 5555551555555, 555555515555555, 55555555155555555, 5555555551555555555, 555555555515555555555, 55555555555155555555555, 5555555555551555555555555, 555555555555515555555555555, 55555555555555155555555555555, 5555555555555551555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332121 ..
A332191 (variants with different repeated digit 2, ..., 9).
Cf.
A332150 ..
A332159 (variants with different middle digit 0, ..., 9).
-
A332151 := n -> 5*(10^(2*n+1)-1)/9-4*10^n;
-
Array[5 (10^(2 # + 1)-1)/9 - 4*10^# &, 15, 0]
Table[With[{c=PadRight[{},n,5]},FromDigits[Join[c,{1},c]]],{n,0,20}] (* Harvey P. Dale, Mar 16 2021 *)
-
apply( {A332151(n)=10^(n*2+1)\9*5-4*10^n}, [0..15])
-
def A332151(n): return 10**(n*2+1)//9*5-4*10**n
A365644
Array read by ascending antidiagonals: A(n, k) = k*(10^n - 1)/9 with k >= 0.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 11, 2, 0, 0, 111, 22, 3, 0, 0, 1111, 222, 33, 4, 0, 0, 11111, 2222, 333, 44, 5, 0, 0, 111111, 22222, 3333, 444, 55, 6, 0, 0, 1111111, 222222, 33333, 4444, 555, 66, 7, 0, 0, 11111111, 2222222, 333333, 44444, 5555, 666, 77, 8, 0
Offset: 0
The array begins:
0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, ...
0, 11, 22, 33, 44, 55, ...
0, 111, 222, 333, 444, 555, ...
0, 1111, 2222, 3333, 4444, 5555, ...
0, 11111, 22222, 33333, 44444, 55555, ...
...
Cf.
A000004 (n=0 or k=0),
A001477 (n=1),
A002275 (k=1),
A002276 (k=2),
A002277 (k=3),
A002278 (k=4),
A002279 (k=5),
A002280 (k=6),
A002281 (k=7),
A002282 (k=8),
A002283 (k=9),
A008593 (n=2),
A053422 (main diagonal),
A105279 (k=10),
A132583,
A177769 (n=3),
A365645 (antidiagonal sums),
A365646.
-
A[n_,k_]:=k(10^n-1)/9; Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten
A173735
a(n) = (10^n + 26)/9.
Original entry on oeis.org
3, 4, 14, 114, 1114, 11114, 111114, 1111114, 11111114, 111111114, 1111111114, 11111111114, 111111111114, 1111111111114, 11111111111114, 111111111111114, 1111111111111114, 11111111111111114, 111111111111111114, 1111111111111111114, 11111111111111111114, 111111111111111111114
Offset: 0
-
[(10^n+26)/9: n in [0..20]]; // Ivan Panchenko, Nov 05 2013
-
CoefficientList[Series[(3-29*x)/((1-x)*(1-10*x)),{x,0,30}],x] (* Ivan Panchenko, Nov 05 2013 *)
-
A173735(n):=(10^n+26)/9$
makelist(A173735(n),n,0,20); /* Ivan Panchenko, Nov 03 2013 */
A173737
(10^n+44)/9 for n>0.
Original entry on oeis.org
6, 16, 116, 1116, 11116, 111116, 1111116, 11111116, 111111116, 1111111116, 11111111116, 111111111116, 1111111111116, 11111111111116, 111111111111116, 1111111111111116, 11111111111111116, 111111111111111116
Offset: 1
-
[(10^n+44)/9: n in [1..20]]; // Vincenzo Librandi, Jul 05 2012
-
CoefficientList[Series[(6-50*x)/((1-x)*(1-10*x)),{x,0,30}],x] (* Vincenzo Librandi, Jul 05 2012 *)
-
A173737(n):=(10^n+44)/9$ makelist(A173737(n),n,1,20); /* Martin Ettl, Nov 08 2012 */
A205085
a(n) = n 5's sandwiched between two 1's.
Original entry on oeis.org
11, 151, 1551, 15551, 155551, 1555551, 15555551, 155555551, 1555555551, 15555555551, 155555555551, 1555555555551, 15555555555551, 155555555555551, 1555555555555551, 15555555555555551, 155555555555555551, 1555555555555555551, 15555555555555555551, 155555555555555555551
Offset: 0
-
I:=[11, 151]; [n le 2 select I[n] else 11*Self(n-1)-10*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Jan 23 2012
-
a[0]=11;a[n_]:=a[n-1]*10+41;Table[a[n],{n,0,44}]
LinearRecurrence[{11, -10}, {11, 151}, 50] (* Vincenzo Librandi, Jan 23 2012 *)
Table[10FromDigits[PadRight[{1},n,5]]+1,{n,20}] (* Harvey P. Dale, May 02 2019 *)
-
a(n)=(140*10^n-41)/9 \\ Charles R Greathouse IV, Jan 23 2012
Comments