cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A285094 Corresponding values of geometric means of digits of numbers from A061430.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 0, 2, 4, 0, 3, 0, 2, 4, 6, 0, 5, 0, 6, 0, 7, 0, 4, 8, 0, 3, 6, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 3, 0, 2, 0, 0, 0, 0, 2, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 4, 0, 0, 0, 0, 4, 0
Offset: 0

Views

Author

Jaroslav Krizek, Apr 14 2017

Keywords

Crossrefs

Cf. A061430 (numbers with integer geometric mean of digits in base 10).
Sequences of numbers n such that a(n) = k for k = 0 - 9: A011540 (k = 0), A002275 (k = 1), A061426 (k = 2), A061427 (k = 3), A061428 (k = 4), A002279 (k = 5), A061429 (k = 6), A002281 (k = 7), A002282 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [0] cat [Floor(&*Intseq(n) ^ (1/#Intseq(n))): n in [1..100000] | IsIntegral(&*Intseq(n) ^ (1/#Intseq(n)))];

A322927 Expansion of x*(1 + 5*x + 40*x^2)/((1 - x^2)*(1 - 10*x^2)).

Original entry on oeis.org

0, 1, 5, 51, 55, 551, 555, 5551, 5555, 55551, 55555, 555551, 555555, 5555551, 5555555, 55555551, 55555555, 555555551, 555555555, 5555555551, 5555555555, 55555555551, 55555555555, 555555555551, 555555555555, 5555555555551, 5555555555555, 55555555555551
Offset: 0

Views

Author

Vincenzo Librandi, Mar 17 2019

Keywords

Crossrefs

Bisections give: A002279 (even part), A173804 (odd part).

Programs

  • Magma
    I:=[0, 1, 5, 51]; [n le 4 select I[n] else 11*Self(n-2)-10*Self(n-4): n in [1..30]];
  • Maple
    seq(coeff(series(x*(1+5*x+40*x^2)/((1-x^2)*(1-10*x^2)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Mar 17 2019
  • Mathematica
    CoefficientList[Series[x (1 + 5 x + 40 x^2) / (10 x^4 - 11 x^2 + 1), {x, 0, 25}], x]

Formula

G.f.: x*(1 + 5*x + 40*x^2)/((1 - x^2)*(1 - 10*x^2)).
a(n) = 11*a(n-2) - 10*a(n-4).
a(n) = 5*(10^n - 1)/9 for n even; a(n) = (5*10^n - 41)/9 otherwise.

A332152 a(n) = 5*(10^(2*n+1)-1)/9 - 3*10^n.

Original entry on oeis.org

2, 525, 55255, 5552555, 555525555, 55555255555, 5555552555555, 555555525555555, 55555555255555555, 5555555552555555555, 555555555525555555555, 55555555555255555555555, 5555555555552555555555555, 555555555555525555555555555, 55555555555555255555555555555, 5555555555555552555555555555555
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332112 .. A332192 (variants with different repeated digit 1, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332152 := n -> 5*(10^(2*n+1)-1)/9-3*10^n;
  • Mathematica
    Array[5 (10^(2 # + 1)-1)/9 - 3*10^# &, 15, 0]
  • PARI
    apply( {A332152(n)=10^(n*2+1)\9*5-3*10^n}, [0..15])
    
  • Python
    def A332152(n): return 10**(n*2+1)//9*5-3*10**n

Formula

a(n) = 5*A138148(n) + 2*10^n = A002279(2n+1) - 3*10^n.
G.f.: (2 + 303*x - 800*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332153 a(n) = 5*(10^(2*n+1)-1)/9 - 2*10^n.

Original entry on oeis.org

3, 535, 55355, 5553555, 555535555, 55555355555, 5555553555555, 555555535555555, 55555555355555555, 5555555553555555555, 555555555535555555555, 55555555555355555555555, 5555555555553555555555555, 555555555555535555555555555, 55555555555555355555555555555, 5555555555555553555555555555555
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332113 .. A332193 (variants with different repeated digit 1, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332153 := n -> 5*(10^(2*n+1)-1)/9-2*10^n;
  • Mathematica
    Array[5 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
  • PARI
    apply( {A332153(n)=10^(n*2+1)\9*5-2*10^n}, [0..15])
    
  • Python
    def A332153(n): return 10**(n*2+1)//9*5-2*10**n

Formula

a(n) = 5*A138148(n) + 3*10^n = A002279(2n+1) - 2*10^n.
G.f.: (3 + 202*x - 700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332154 a(n) = 5*(10^(2*n+1)-1)/9 - 10^n.

Original entry on oeis.org

4, 545, 55455, 5554555, 555545555, 55555455555, 5555554555555, 555555545555555, 55555555455555555, 5555555554555555555, 555555555545555555555, 55555555555455555555555, 5555555555554555555555555, 555555555555545555555555555, 55555555555555455555555555555, 5555555555555554555555555555555
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332114 .. A332194 (variants with different repeated digit 1, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332154 := n -> 5*(10^(2*n+1)-1)/9-10^n;
  • Mathematica
    Array[5 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{4,545,55455},20] (* or *) Table[FromDigits[Join[PadRight[{},n,5],{4},PadRight[{},n,5]]],{n,0,20}] (* Harvey P. Dale, Mar 09 2025 *)
  • PARI
    apply( {A332154(n)=10^(n*2+1)\9*5-10^n}, [0..15])
    
  • Python
    def A332154(n): return 10**(n*2+1)//9*5-10**n

Formula

a(n) = 5*A138148(n) + 4*10^n = A002279(2n+1) - 10^n.
G.f.: (4 + 101*x - 600*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332156 a(n) = 5*(10^(2*n+1)-1)/9 + 10^n.

Original entry on oeis.org

6, 565, 55655, 5556555, 555565555, 55555655555, 5555556555555, 555555565555555, 55555555655555555, 5555555556555555555, 555555555565555555555, 55555555555655555555555, 5555555555556555555555555, 555555555555565555555555555, 55555555555555655555555555555, 5555555555555556555555555555555
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332116 .. A332196 (variants with different repeated digit 1, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332156 := n -> 5*(10^(2*n+1)-1)/9+10^n;
  • Mathematica
    Array[5 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
  • PARI
    apply( {A332156(n)=10^(n*2+1)\9*5+10^n}, [0..15])
    
  • Python
    def A332156(n): return 10**(n*2+1)//9*5+10**n

Formula

a(n) = 5*A138148(n) + 6*10^n = A002279(2n+1) + 10^n.
G.f.: (6 - 101*x - 400*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: exp(x)*(50*exp(99*x) + 9*exp(9*x) - 5)/9. - Stefano Spezia, Jul 13 2024

A332157 a(n) = 5*(10^(2*n+1)-1)/9 + 2*10^n.

Original entry on oeis.org

7, 575, 55755, 5557555, 555575555, 55555755555, 5555557555555, 555555575555555, 55555555755555555, 5555555557555555555, 555555555575555555555, 55555555555755555555555, 5555555555557555555555555, 555555555555575555555555555, 55555555555555755555555555555, 5555555555555557555555555555555
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332117 .. A332197 (variants with different repeated digit 1, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332157 := n -> 5*(10^(2*n+1)-1)/9+2*10^n;
  • Mathematica
    Array[5 (10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
  • PARI
    apply( {A332157(n)=10^(n*2+1)\9*5+2*10^n}, [0..15])
    
  • Python
    def A332157(n): return 10**(n*2+1)//9*5+2*10**n

Formula

a(n) = 5*A138148(n) + 7*10^n = A002279(2n+1) + 2*10^n.
G.f.: (7 - 202*x - 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332158 a(n) = 5*(10^(2*n+1)-1)/9 + 3*10^n.

Original entry on oeis.org

8, 585, 55855, 5558555, 555585555, 55555855555, 5555558555555, 555555585555555, 55555555855555555, 5555555558555555555, 555555555585555555555, 55555555555855555555555, 5555555555558555555555555, 555555555555585555555555555, 55555555555555855555555555555, 5555555555555558555555555555555
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332118 .. A332178, A181965 (variants with different repeated digit 1, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332158 := n -> 5*(10^(2*n+1)-1)/9+3*10^n;
  • Mathematica
    Array[5 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
  • PARI
    apply( {A332158(n)=10^(n*2+1)\9*5+3*10^n}, [0..15])
    
  • Python
    def A332158(n): return 10**(n*2+1)//9*5+3*10**n

Formula

a(n) = 5*A138148(n) + 8*10^n = A002279(2n+1) + 3*10^n.
G.f.: (8 - 303*x - 200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A365933 a(n) is the period of the remainders when repdigits are divided by n.

Original entry on oeis.org

1, 9, 27, 9, 9, 27, 54, 9, 81, 9, 18, 27, 54, 54, 27, 9, 144, 81, 162, 9, 54, 18, 198, 27, 9, 54, 243, 54, 252, 27, 135, 9, 54, 144, 54, 81, 27, 162, 54, 9, 45, 54, 189, 18, 81, 198, 414, 27, 378, 9, 432, 54, 117, 243, 18, 54, 162, 252, 522, 27, 540, 135, 162, 9, 54
Offset: 1

Views

Author

Karl-Heinz Hofmann, Nov 07 2023

Keywords

Comments

For n>1: Periods are divisible by 9 (= a full cycle in the sequence of repdigits). a(n)/9 is the period of the remainders when repunits are divided by n. So the digit part of the repdigits has no effect on periods generally. For most n the beginning of the periodic part is always A010785(1). If n is a term of A083118 the periodic part starts later after some initial remainders that do not repeat.

Examples

			For n = 6:                Remainders of A010785(1..54) mod n.
A010785( 1...9) mod n:      [1, 2, 3, 4, 5, 0, 1, 2, 3]
A010785(10..18) mod n:      [5, 4, 3, 2, 1, 0, 5, 4, 3]
A010785(19..27) mod n:      [3, 0, 3, 0, 3, 0, 3, 0, 3]
So the period is 3*9 = 27. Thus a(n) = 27. And the pattern seen above starts again:
A010785(28..36) mod n:      [1, 2, 3, 4, 5, 0, 1, 2, 3]
A010785(37..45) mod n:      [5, 4, 3, 2, 1, 0, 5, 4, 3]
A010785(46..54) mod n:      [3, 0, 3, 0, 3, 0, 3, 0, 3]
		

Crossrefs

Cf. A305322 (divisor 3), A002279 (divisor 5), A366596 (divisor 7).
Cf. A083118 (the impossible divisors).

Programs

  • Python
    def A365933(n):
        if n == 1: return 1
        remainders, exponent = [], 1
        while (rem:=(10**exponent // 9 % n)) not in remainders:
            remainders.append(rem); exponent += 1
        return (exponent - remainders.index(rem) - 1) * 9
    
  • Python
    def A365933(n):
        if n==1: return 1
        a,b,x,y=1,1,1%n,11%n
        while x!=y:
            if a==b:
                a<<=1
                x,b=y,0
            y = (10*y+1)%n
            b+=1
        return 9*b # Chai Wah Wu, Jan 23 2024

A361820 Palindromes in A329150.

Original entry on oeis.org

0, 2, 3, 5, 7, 11, 22, 33, 55, 77, 202, 222, 232, 252, 272, 303, 313, 323, 333, 353, 373, 505, 525, 535, 555, 575, 707, 717, 727, 737, 757, 777, 1111, 2002, 2112, 2222, 2332, 2552, 2772, 3003, 3113, 3223, 3333, 3553, 3773, 5005, 5115, 5225, 5335, 5555, 5775, 7007, 7117
Offset: 1

Views

Author

Bernard Schott, Mar 25 2023

Keywords

Comments

If m is a palindrome with no digit greater than 5 in A118597, then A329147(m) is a term, but there exist terms that are not of this form as 313, 717, ...

Examples

			232 is a term which has two preimages since A329147(91) = A329147(121) = 232.
313 = A329147(26) is a term whose preimage is not in A118597.
2002 is a term since A329147(1001) = 2002.
2112 is a term since A329147(151) = 2112.
27172 = A329147(1471) is a term whose preimage is not in A118597.
		

Crossrefs

Intersection of A002113 and A329150.

Programs

  • Mathematica
    p[n_] := If[n > 0, Prime[n], 0]; seq[ndigmax_] := Module[{t = Table[FromDigits[ Flatten@ IntegerDigits@ (p /@ IntegerDigits[n])], {n, 0, 10^ndigmax - 1}]}, Union@ Select[t, # < 10^ndigmax && PalindromeQ[#] &]]; seq[4] (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    ispal(n) = my(d=digits(n)); d==Vecrev(d);
    f(n) = if (n, fromdigits(concat(apply(d -> if (d, digits(prime(d)), [0]), digits(n)))), 0); \\ A329147
    lista(nn) = my(list = List(), m); for (n=0, nn, m = f(n); if ((m <= nn) && ispal(m), listput(list, m));); vecsort(Set(list)); \\ Michel Marcus, Mar 26 2023
Previous Showing 31-40 of 40 results.