cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 198 results. Next

A292249 Compound filter (multiplicative order of 2 mod 2n+1 & prime signature of 2n+1): a(n) = P(A002326(n), A046523(2n+1)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 14, 9, 42, 65, 90, 40, 44, 189, 61, 77, 273, 318, 434, 20, 115, 148, 702, 148, 230, 119, 265, 299, 297, 86, 1430, 320, 271, 1769, 1890, 142, 148, 2277, 373, 665, 54, 485, 625, 819, 2400, 3485, 86, 556, 77, 148, 115, 856, 1224, 850, 5150, 1377, 832, 5777, 702, 856, 434, 1220, 265, 430, 6438, 320, 5771, 35, 185, 8645, 271
Offset: 0

Views

Author

Antti Karttunen, Oct 02 2017

Keywords

Crossrefs

Cf. A000027, A002326, A046523, A278223, A286573, A291769 (rgs-version of the same filter).
Cf. also A291755, A292268.

Programs

Formula

a(n) = (1/2)*(2 + ((A002326(n) + A046523(2n+1))^2) - A002326(n) - 3*A046523(2n+1)).

A292266 Restricted growth sequence transform of A292265; a filter related to Shevelev's algorithm for computing A002326.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 12, 10, 13, 14, 15, 16, 17, 16, 18, 19, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 24, 34, 35, 36, 37, 38, 39, 11, 16, 6, 40, 41, 42, 43, 44, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53, 43, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 57, 76, 77, 78, 79, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Oct 02 2017

Keywords

Comments

For all i, j: a(i) = a(j) => A002326(i) = A002326(j).

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A000265(n) = (n >> valuation(n, 2));
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A292265(n) = { my(x = n+n+1, z = A019565(valuation(1+x,2)), m = A000265(1+x)); while(m!=1, z *= A019565(valuation(x+m,2)); m = A000265(x+m)); z; };
    write_to_bfile(0,rgs_transform(vector(32769,n,A292265(n-1))),"b292266_upto32768.txt");

A292268 Compound filter (multiplicative order of 2 mod 2n+1 & number of trailing 1's in binary expansion of 2n+1): a(n) = P(A002326(n), A007814(2n+2)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 10, 13, 21, 65, 78, 25, 36, 189, 21, 89, 210, 189, 406, 41, 55, 90, 666, 103, 210, 119, 78, 348, 231, 44, 1378, 251, 171, 1769, 1830, 61, 78, 2277, 253, 701, 45, 230, 465, 900, 1485, 3485, 36, 463, 66, 90, 55, 816, 1176, 495, 5050, 1429, 78, 5777, 666, 777, 406, 1034, 78, 349, 6105, 230, 5050, 85, 105, 8645, 171, 739, 2346, 9729, 1081
Offset: 0

Views

Author

Antti Karttunen, Oct 02 2017

Keywords

Crossrefs

Cf. A000027, A002326, A007814, A292267 (rgs-version of this filter).
Cf. also A291755, A292249.

Programs

Formula

a(n) = (1/2)*(2 + ((A002326(n) + A007814(2n+2))^2) - A002326(n) - 3*A007814(2n+2)).

A179460 Numbers m for which 2*A179382(m)=A002326(m-1).

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 10, 13, 14, 15, 17, 19, 21, 22, 27, 29, 30, 31, 33, 34, 35, 39, 41, 42, 49, 50, 51, 54, 55, 57, 61, 63, 65, 66, 69, 70, 71, 73, 75, 79, 82, 85, 86, 87, 89, 90, 91, 93, 97, 99, 101, 102, 103, 104, 105, 106, 107, 114, 115, 121, 122, 125, 126, 129, 133, 135
Offset: 1

Views

Author

Vladimir Shevelev, Jul 14 2010

Keywords

Comments

m is in the sequence iff the set {1,2,...,2^(2*m-2)} considered in reduced residue system modulo 2*m-1 contains the same number of odd and even integers.

Examples

			5 in the sequence since modulo 2*5-1=9 we have {1,2,4,8,16,32}={1,2,4,8,7,5} and the last set contains 3 odd and 3 even elements.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{r = Union@ PowerMod[2, Range[0, 2 n - 2], 2 n - 1]}, Length@ r == 2 Count[ OddQ@ r, True]]; Select[ Range@ 138, fQ] (* Robert G. Wilson v, Aug 26 2010 *)

Extensions

More terms from Robert G. Wilson v, Aug 26 2010

A274298 A bisection of A002326.

Original entry on oeis.org

1, 4, 6, 12, 8, 6, 20, 28, 10, 36, 20, 12, 21, 52, 18, 60, 12, 22, 9, 30, 54, 8, 11, 10, 48, 100, 12, 36, 28, 12, 110, 100, 14, 18, 68, 46, 28, 148, 24, 52, 33, 20, 156, 172, 58, 180, 36, 18, 96, 196, 66, 20, 90, 70, 15, 24, 60, 76, 29, 78, 24, 84, 82, 110, 16, 84, 52, 268, 12, 92, 70, 36, 136, 292, 90
Offset: 0

Views

Author

N. J. A. Sloane, Jun 20 2016

Keywords

Crossrefs

Cf. A002326.

A274299 A bisection of A002326.

Original entry on oeis.org

2, 3, 10, 4, 18, 11, 18, 5, 12, 12, 14, 23, 8, 20, 58, 6, 66, 35, 20, 39, 82, 28, 12, 36, 30, 51, 106, 36, 44, 24, 20, 7, 130, 36, 138, 60, 42, 15, 20, 52, 162, 83, 18, 60, 178, 60, 40, 95, 12, 99, 84, 66, 210, 28, 18, 37, 226, 30, 92, 119, 162, 36, 50, 8, 36, 131, 22, 135, 20, 30, 94, 60, 48, 116
Offset: 0

Views

Author

N. J. A. Sloane, Jun 20 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MultiplicativeOrder[2, 4 n + 3], {n, 0, 73}] (* Stan Wagon, Jun 24 2016 *)

A139791 Numbers n for which 2n is a multiple of A002326(n), the multiplicative order of 2 mod 2n+1.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156, 158, 165, 168, 170
Offset: 1

Views

Author

Vladimir Shevelev, May 21 2008, May 24 2008

Keywords

Comments

The sequence properly contains A005097. 170 is the first number which is not in A005097. One can prove that A002326(2^(2t-1)) = 4t. Thus if n=2^(2t-1), where, for any m>0, t=2^(m-1) then 2n is a multiple of A002326(n) while 2n+1 is a Fermat number which, as well known, is not always a prime.
The sequence is the union of A005097 and (A001567 - 1)/2. [Conjectured by Vladimir Shevelev, proved by Ray Chandler, May 26 2008]

References

  • Christopher Adler and Jean-Paul Allouche (2022), Finite self-similar sequences, permutation cycles, and music composition, Journal of Mathematics and the Arts, 16:3, 244-261, DOI: 10.1080/17513472.2022.2116745.

Crossrefs

Programs

  • Mathematica
    Select[Range[160], Divisible[2#, MultiplicativeOrder[2, 2#+1]] &] (* Amiram Eldar, Jun 28 2019 *)
  • PARI
    isok(n) = !(2*n % znorder(Mod(2, 2*n+1))); \\ Michel Marcus, Nov 02 2017

Extensions

Data extended up to a(68) = 170 to clarify distinction from A005097 and essentially identical sequences A130290 and A102781, by M. F. Hasler, Dec 13 2019

A237292 a(n) = A002326(2n(n+1)) / A002326(n).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 7, 23, 25, 27, 29, 31, 33, 35, 37, 13, 41, 43, 45, 47, 49, 51, 53, 11, 19, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 35, 107, 109, 37, 113, 115, 117, 119, 121, 123, 125
Offset: 0

Views

Author

Thomas Ordowski, Feb 06 2014

Keywords

Comments

Note that ((2n+1)^2-1)/2 = 2n(n+1).
We have 1 <= a(n) <= 2n+1 and a(n) divides 2n+1 for every n >= 0.
Odd m is a Wieferich number A182297 if and only if a((m-1)/2) < m.
Odd prime p is a Wieferich prime A001220 if and only if a((p-1)/2) = 1.
a((n-1)/2) = 1 for n = 1, 1093, 3511, 7651, 10533, 14209, 17555, ...

Crossrefs

Programs

  • Maple
    1,seq(numtheory:-order(2,4*n*(n+1)+1)/numtheory:-order(2,2*n+1),n=1..100); # Robert Israel, Dec 02 2015
  • PARI
    a002326(n) = znorder(Mod(2, 2*n+1));
    a(n) = a002326(2*n*(n+1))/a002326(n); \\ Michel Marcus, Feb 08 2014

Formula

a(n) = ord_{(2n+1)^2}(2) / ord_{2n+1}(2), n >= 0.

Extensions

More terms from Michel Marcus, Feb 08 2014
Edited by Thomas Ordowski, Dec 02 2015

A359147 Partial sums of A002326.

Original entry on oeis.org

1, 3, 7, 10, 16, 26, 38, 42, 50, 68, 74, 85, 105, 123, 151, 156, 166, 178, 214, 226, 246, 260, 272, 295, 316, 324, 376, 396, 414, 472, 532, 538, 550, 616, 638, 673, 682, 702, 732, 771, 825, 907, 915, 943, 954, 966, 976, 1012, 1060, 1090, 1190, 1241, 1253, 1359, 1395, 1431
Offset: 0

Views

Author

N. J. A. Sloane, Feb 14 2023

Keywords

Comments

a(n)/n is the average order of 2 mod m, averaged over all odd numbers m from 1 to 2n+1. From Kurlberg-Pomerance (2013), this is of order constant*n/log(n). So the graph of this sequence grows like constant*n^2/log(n). [The asymptotic formula involves the constant B = 0.3453720641..., A218342. - Amiram Eldar, Feb 15 2023]

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
         `if`(n=0, 1, a(n-1)+numtheory[order](2, 2*n+1))
        end:
    seq(a(n), n=0..55);  # Alois P. Heinz, Feb 14 2023
  • Mathematica
    Accumulate[MultiplicativeOrder[2,#]&/@Range[1,151,2]] (* Harvey P. Dale, Jul 08 2023 *)
  • PARI
    a(n) = sum(k = 0, n, if(k<0, 0, znorder(Mod(2, 2*k+1)))) \\ Thomas Scheuerle, Feb 14 2023
    
  • Python
    from sympy import n_order
    def A359147(n): return sum(n_order(2,m) for m in range(1,n+1<<1,2)) # Chai Wah Wu, Feb 14 2023

Formula

a(n) = Sum_{k = 0..n} A007733(2*k+1). - Thomas Scheuerle, Feb 15 2023

A165783 a(n) = A002326(n-1) + A000120(A165781(n-1)).

Original entry on oeis.org

2, 3, 6, 4, 9, 15, 18, 5, 12, 27, 8, 15, 30, 27, 42, 6, 15, 17, 54, 16, 30, 21, 17, 32, 31, 10, 78, 28, 27, 87, 90, 7, 18, 99, 33, 49, 12, 29, 45, 56, 81, 123, 10, 39, 15, 16, 13, 50, 72, 45, 150, 74, 16, 159, 54, 50, 42, 63, 15, 33, 165, 26, 150, 8, 21, 195, 26, 53, 102, 207
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 26 2009

Keywords

Comments

Given a shift register : r(k)=r(k-1)+ X if r(k-1) is not divisible Y, else r(k)=r(k-1)/Y.
Gcd(r(0), X))=1, Gcd(X, Y)=1.
Then the length of the period orbit of such a register is L + digitsum (r(L)*(Y^L-1)/ X). Digitsum(z)in base X.
r(L) a point from period orbit, L minimal possible exponent such that (Y^L-1)/X)is a positive integer.
Number of period orbits is the order of the cyclic group connected to the register.
a(n) is the period length for Y=2, X=2*n-1, r(L)=1. [Ctibor O. Zizka, Nov 24 2009]

Examples

			n=1, a(1)=1 + digitsum(1)= 2.
n=2, a(2)=2 + digitsum(1)=3.
n=3, a(3)= 4 + digitsum(3) = 6.
n=4, a(4)= 3 + digitsum(1)=4.
n=5, a(5)= 6 + digitsum(7)=9. [_Ctibor O. Zizka_, Nov 24 2009]
		

Crossrefs

Programs

  • Maple
    A002326 := proc(n) if n = 0 then 1; else numtheory[order](2,2*n+1) ; end if ; end proc:
    A165781 := proc(n) (2^A002326(n)-1)/(2*n+1) ; end proc:
    read("transforms") ; A165783 := proc(n) A002326(n-1)+wt(A165781(n-1) ) ; end proc:
    seq(A165783(n),n=1..80) ; # R. J. Mathar, Nov 26 2009
  • Mathematica
    Table[(b = MultiplicativeOrder[2, 2 n - 1]) + Plus @@ IntegerDigits[(2^b - 1)/(2 n - 1), 2], {n, 1, 70}] (* Ivan Neretin, May 09 2015 *)
  • PARI
    hamming(n)=my(v=binary(n));sum(i=1,#v,v[i])
    a(n)=my(x=2*n+1,m=znorder(Mod(2,x)));m+hamming((1<
    				

Formula

a(n) = L + digitsum((2^L -1)/(2*n-1)). Digitsum(z)in base 2. [Ctibor O. Zizka, Nov 24 2009]

Extensions

Program and extension by Charles R Greathouse IV, Nov 24 2009
Definition corrected and comments merged by R. J. Mathar, Nov 26 2009
Previous Showing 11-20 of 198 results. Next