cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A241670 Semiprimes of the form n^4 - n^3 - n - 1.

Original entry on oeis.org

187, 1073, 8989, 35657, 61423, 151979, 1632923, 2495959, 8345537, 9658823, 18687173, 49194347, 64880909, 77244217, 179502923, 250046873, 451259573, 502874849, 588444323, 651263839, 830296829, 1723401587, 1935548789, 4552183739, 4839132407, 8739047573, 13324055659
Offset: 1

Views

Author

K. D. Bajpai, Aug 09 2014

Keywords

Comments

Since n^4 - n^3 - n - 1 = (n^2 + 1)*(n^2 - n - 1), it is a must that (n^2 + 1) and (n^2 - n - 1) both should be prime.
Primes of the form (n^2+1) are at A002496.
Primes of the form (n^2-n-1) are at A002327.

Examples

			187 is in the sequence because 4^4 - 4^3 - 4 - 1 = 187 = 11 * 17, which is semiprime.
1073 is in the sequence because 6^4 - 6^3 - 6 - 1 = 1073 = 29 * 37, which is semiprime.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:= func; [s: n in [1..400] | IsSemiprime(s) where s is n^4 - n^3 - n - 1]; // Vincenzo Librandi, Aug 10 2014
  • Maple
    select(k -> numtheory:-bigomega(k)=2, [seq(x^4 - x^3 - x - 1, x=1..1000)]);
  • Mathematica
    Select[Table[n^4 - n^3 - n - 1, {n, 500}], PrimeOmega[#] == 2 &]
  • PARI
    for(n=1,10^4,p=n^2+1;q=n^2-n-1;if(isprime(p)&&isprime(q),print1(p*q,", "))) \\ Derek Orr, Aug 09 2014
    

A245042 Primes of the form (k^2+4)/5.

Original entry on oeis.org

17, 73, 89, 193, 337, 521, 953, 1009, 1249, 1657, 2377, 2833, 3329, 3433, 4441, 4561, 5849, 6553, 7297, 8081, 8737, 9769, 11617, 12401, 12601, 13417, 15569, 16937, 17881, 18121, 20353, 21649, 27529, 28729, 29033, 30577, 33457, 35449, 36809, 46273, 49801
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Comments

Also equal to primes p such that 5*p-4 is a perfect square.

Crossrefs

Programs

  • Mathematica
    Select[(Range[500]^2+4)/5,PrimeQ] (* Harvey P. Dale, Jul 13 2014 *)
  • Python
    import sympy
    L = (k**2 + 4 for k in range(10**3))
    [n//5 for n in L if n % 5 == 0 and sympy.ntheory.isprime(n//5)]

A245045 Primes of the form (k^2+2)/6.

Original entry on oeis.org

3, 11, 17, 43, 67, 113, 131, 193, 241, 353, 523, 641, 683, 1291, 1601, 1667, 1873, 2017, 2243, 2731, 3083, 3361, 3851, 4483, 4817, 4931, 5281, 5521, 7211, 8363, 8513, 8971, 9283, 9923, 10753, 11971, 13633, 16433, 17713, 18371, 18593, 19267, 21841, 22571
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Examples

			When k=4, (k^2+2)/6 = 3 is prime, so 4 is a member of the sequence. since putting k = 0, 1, 2, or 3 does not give a prime, so 4 is the first term.
		

Crossrefs

Cf. A154616, A002327, A066436. First 5 terms equal to A078116. First 4 terms equal to A127996.

Programs

  • Python
    import sympy
    [(k**2+2)/6 for k in range(10**6) if sympy.ntheory.isprime((k**2+2)/6) & ((k**2+2)/6).is_integer()]

A265006 Twin prime pairs of the form (k^2 + k - 1, k^2 + k + 1).

Original entry on oeis.org

5, 7, 11, 13, 29, 31, 41, 43, 71, 73, 239, 241, 419, 421, 461, 463, 599, 601, 1481, 1483, 1721, 1723, 2549, 2551, 2969, 2971, 3539, 3541, 4421, 4423, 8009, 8011, 10301, 10303, 17291, 17293, 19181, 19183, 20021, 20023, 23561, 23563, 24179, 24181, 27059, 27061, 31151, 31153, 35531, 35533
Offset: 1

Views

Author

Bill McEachen, Nov 29 2015

Keywords

Comments

This is a subset of A002327 and A002383 taken together. Note that 3 is not a member, as the pairing (3, 5) is excluded as defined, as 3 and 5 associate to different centers.
The corresponding n are in A088485.
The average of each twin prime pair is an oblong number (A002378). - Michel Marcus, Feb 04 2017

Examples

			For k = 6, k^2 + k = 6^2 + 6 = 42, and (41,43) is a twin prime pair, so 41 and 43 are in the sequence.
		

Crossrefs

Programs

  • Magma
    &cat[[n^2+n-1, n^2+n+1]: n in [0..250]| IsPrime(n^2+n-1) and IsPrime(n^2+n+1)]; // Vincenzo Librandi, Feb 05 2017
  • Mathematica
    {#^2 + # - 1, #^2 + # + 1} & /@ Select[Range@ 200, PrimeQ[#^2 + # - 1] && PrimeQ[#^2 + # + 1] &] // Flatten (* Michael De Vlieger, Nov 30 2015 *)
    Flatten[Select[Table[n^2 + n + {-1, 1}, {n, 0, 200}], And@@PrimeQ[#] &]] (* Vincenzo Librandi, Feb 05 2017 *)
  • PARI
    genit()={my(maxx=1000);n=0;while(n
    				

Formula

a(2n-1) = A088486(n). a(2n)=2+a(2n-1).

A126439 Least prime of the form x^n-x-1.

Original entry on oeis.org

5, 5, 13, 29, 61, 2097143, 1679609, 509, 1021, 8589934583, 4093, 67108859, 16381, 470184984569, 4294967291, 2218611106740436979, 68719476731, 1350851717672992079, 1048573, 10460353199, 4194301, 20013311644049280264138724244295359, 16777213, 108347059433883722041830239, 20282409603651670423947251285999, 58149737003040059690390159, 72057594037927931, 536870909, 999999999999999999999999999989
Offset: 2

Views

Author

Artur Jasinski, Dec 26 2006, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 2; While[ ! PrimeQ[k^n -k - 1], k++ ]; AppendTo[a, k^n - k - 1], {n, 2, 30}]; a (*Artur Jasinski*)

A241975 Numbers n such that n^4 - n^3 - n - 1 is a semiprime.

Original entry on oeis.org

4, 6, 10, 14, 16, 20, 36, 40, 54, 56, 66, 84, 90, 94, 116, 126, 146, 150, 156, 160, 170, 204, 210, 260, 264, 306, 340, 350, 386, 396, 406, 420, 464, 474, 496, 570, 634, 674, 696, 700, 716, 740, 764, 780, 816, 826, 864, 890, 966, 1054, 1070, 1094, 1106, 1144
Offset: 1

Views

Author

Vincenzo Librandi, Aug 10 2014

Keywords

Comments

Since n^4 - n^3 - n - 1 = (n^2 + 1)*(n^2 - n - 1), these are also numbers n such that n^2 + 1 and n^2 - n - 1 are both prime. Numbers in the intersection of A005574 and A002328. - Derek Orr, Aug 10 2014 [Sequence numbers corrected by Jens Kruse Andersen, Aug 11 2014]

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [ n: n in [2..1500] | IsSemiprime(n^4 - n^3 - n - 1)];
    
  • Mathematica
    Select[Range[2000], PrimeOmega[#^4 - #^3 - # - 1]==2 &]
  • PARI
    for(n=1,10^4,if(isprime(n^2+1)&&isprime(n^2-n-1),print1(n,", "))) \\ Derek Orr, Aug 10 2014

A242930 Primes of the form (k^2+7)/11.

Original entry on oeis.org

37, 53, 193, 373, 421, 673, 1061, 2213, 2753, 3637, 4481, 5237, 5413, 7333, 7541, 8513, 8737, 9781, 11393, 12853, 14401, 15733, 17761, 19237, 21121, 25153, 25537, 27701, 29537, 34273, 34721, 39841, 42533, 47653, 50593, 51137
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Comments

Also equal to primes p such that 11*p-7 is a perfect square.

Crossrefs

Programs

  • Python
    import sympy
    [(k**2+7)/11 for k in range(10**6) if sympy.ntheory.isprime((k**2+7)/11) & ((k**2+7)/11).is_integer()]

A172192 Numbers k such that k^6 - (k+1)^5 is prime.

Original entry on oeis.org

4, 9, 10, 12, 14, 19, 29, 46, 57, 59, 66, 71, 72, 84, 85, 90, 95, 96, 97, 114, 119, 122, 155, 157, 190, 191, 204, 207, 212, 221, 222, 244, 251, 256, 276, 285, 286, 289, 294, 300, 301, 307, 319, 320, 337, 344, 355, 359, 380, 382, 392, 400, 411, 422, 426, 441, 451
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Jan 29 2010

Keywords

Comments

Corresponding primes are in A171771. Negative values of primes are obtained for 1 and 2.

Examples

			4^6-(4+1)^5 = 971 is prime, so 4 is in the sequence.
5^6-(5+1)^5 = 7849 = 47*167 is composite, so 5 is not in the sequence.
9^6-(9+1)^5 = 431441 is prime, so 9 is in the sequence.
		

Crossrefs

Cf. A171771, A002327 (primes of form n^2-n-1), A140719 (primes of form n^3-(n+1)^2), A087191 (primes of form n^4-(n+1)^3).

Programs

  • Magma
    [ n: n in [1..460] | IsPrime(p) and p gt 0 where p is n^6-(n+1)^5 ];
    
  • Mathematica
    Select[Range[3,500],PrimeQ[#^6-(#+1)^5]&] (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    is(n)=isprime(n^6-(n+1)^5) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Edited, extended, non-specific references removed and MAGMA program added by Associate Editors OEIS, Mar 05 2010

A235484 Square numbers n such that n^2 - n - 1 is prime.

Original entry on oeis.org

4, 9, 16, 25, 36, 49, 121, 196, 289, 324, 361, 529, 625, 729, 1024, 1296, 1681, 1849, 2916, 3600, 4225, 4761, 5184, 5929, 6400, 6724, 6889, 7569, 7744, 8464, 8649, 9604, 12100, 13689, 14641, 14884, 15876, 16129, 18225, 18496, 19044, 22201, 22500, 24025, 24649, 25281, 28224
Offset: 1

Views

Author

Zak Seidov, Apr 13 2014

Keywords

Comments

Or, squares in A002328: a(1) = 4 = A002328(2), a(2) = 9 = A002328(6), a(1) = 16 = A002328(11).
The corresponding primes, 11, 71, 239, 599, 1259, 2351, 14519, 38219, 83231, 104651, 129959, 279311, 389999, 530711, 1047551, 1678319, are a subsequence of A002327.

Crossrefs

Intersection of A002328 and A000290. Cf. A002327.

Programs

  • Mathematica
    Select[Table[n^2, {n, 100}], PrimeQ[#^2 - # - 1] &]
  • PARI
    list(lim)=my(v=List()); for(n=2,sqrtint(lim\1), if(isprime(n^2-n-1), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jun 13 2017
Previous Showing 31-39 of 39 results.