cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 71 results. Next

A250175 Numbers n such that Phi_15(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 11, 17, 23, 43, 46, 52, 53, 61, 62, 78, 84, 88, 89, 92, 99, 108, 123, 124, 141, 146, 154, 156, 158, 163, 170, 171, 182, 187, 202, 217, 219, 221, 229, 233, 238, 248, 249, 253, 264, 274, 275, 278, 283, 285, 287, 291, 296, 302, 309, 314, 315, 322, 325, 342, 346, 353, 356, 366, 368, 372, 377, 380, 384, 394, 404, 406, 411, 420, 425
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[15, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(15, n)); \\ Michel Marcus, Jan 16 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015

A250176 Numbers n such that Phi_20(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

4, 9, 11, 16, 19, 26, 34, 45, 54, 70, 86, 91, 96, 101, 105, 109, 110, 119, 120, 126, 129, 139, 141, 149, 171, 181, 190, 195, 215, 229, 260, 276, 299, 305, 309, 311, 314, 319, 334, 339, 369, 375, 414, 420, 425, 444, 470, 479, 485, 506, 519, 534, 540, 550
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[20, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(20, n)); \\ Michel Marcus, Sep 29 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A258775 Numbers n such that 1 + sigma(n)+ sigma(n)^2 is prime.

Original entry on oeis.org

1, 2, 5, 6, 7, 8, 11, 13, 14, 15, 19, 23, 34, 37, 40, 45, 49, 53, 57, 58, 60, 61, 78, 79, 89, 92, 105, 106, 109, 123, 129, 132, 137, 138, 140, 141, 143, 148, 149, 154, 155, 156, 160, 161, 163, 165, 167, 182, 188, 191, 193, 195, 201, 208, 212, 213, 222, 226
Offset: 1

Views

Author

Robert Price, Jun 09 2015

Keywords

Comments

Also numbers n such that A000203(n) is in A002384. - Robert Israel, Jun 09 2015

Crossrefs

Programs

  • Magma
    [n: n in [1..250] | IsPrime(1 + SumOfDivisors(n)+ SumOfDivisors(n)^2)]; // Vincenzo Librandi, Jun 10 2015
  • Maple
    select(isprime @ (t -> 1+t+t^2) @ numtheory:-sigma, [$1..1000]); # Robert Israel, Jun 09 2015
  • Mathematica
    Select[ Range[10000], PrimeQ[ 1 + DivisorSigma[1, #] + DivisorSigma[1, #]^2] & ]
    Select[ Range[10000], PrimeQ[ Cyclotomic[3, DivisorSigma[1, #]]] &]
  • PARI
    for(n=1,10^3,if(isprime(1+sigma(n)+sigma(n)^2),print1(n,", "))) \\ Derek Orr, Jun 09 2015
    

A342690 Prime powers q in A246655 such that q^2 + q + 1 is prime.

Original entry on oeis.org

2, 3, 5, 8, 17, 27, 41, 59, 71, 89, 101, 131, 167, 173, 293, 383, 512, 677, 701, 743, 761, 773, 827, 839, 857, 911, 1091, 1097, 1163, 1181, 1193, 1217, 1331, 1373, 1427, 1487, 1559, 1583, 1709, 1811, 1847, 1931, 1973, 2129, 2273, 2309, 2339, 2411, 2663
Offset: 1

Views

Author

Martin Becker, May 18 2021

Keywords

Comments

Also, prime powers q = p^(3^k) with prime p and nonnegative integer k and the property that q^2 + q + 1 is prime, since the exponent must be a power of 3, from the theory of cyclotomic polynomials. 17^(3^7) is in the sequence, generating a 5382-digit prime.

Examples

			5 = 5^1 is a term: 5^2 + 5 + 1 = 31 is prime.
8 = 2^3 is a term: 8^2 + 8 + 1 = 73 is prime.
		

Crossrefs

Intersection of A246655 and A002384.

Programs

  • Mathematica
    Select[Range@2000,PrimePowerQ@#&&PrimeQ[#^2+#+1]&] (* Giorgos Kalogeropoulos, May 18 2021 *)
  • PARI
    N=50; i=0; a=vector(N); for(q=2, oo, if(isprimepower(q) && isprime(q^2+q+1), i+=1; a[i]=q; if(i==N, break))); a

A002640 Numbers k such that (k^2 + k + 1)/3 is prime.

Original entry on oeis.org

4, 7, 10, 13, 19, 28, 31, 34, 40, 43, 52, 70, 73, 76, 82, 85, 91, 97, 103, 112, 115, 124, 127, 136, 145, 148, 157, 166, 175, 187, 190, 199, 202, 223, 241, 244, 259, 265, 271, 274, 280, 286, 316, 325, 358, 370, 376, 385, 388, 409, 421, 427, 442, 460, 469, 472
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002384.

Programs

  • Magma
    [n: n in [4..500] | IsPrime((n^2+n+1) div 3)]; // Vincenzo Librandi, Nov 18 2010
    
  • Mathematica
    Select[Range[500], PrimeQ[(#^2 + # + 1)/3] &] (* Vincenzo Librandi, Sep 25 2012 *)
  • PARI
    isok(k) = my(x=k^2+k+1); !(x%3) && isprime(x/3); \\ Michel Marcus, Aug 22 2025

A107317 Semiprimes of the form 2*(m^2 + m + 1) (implying that m^2 + m + 1 is a prime).

Original entry on oeis.org

6, 14, 26, 62, 86, 146, 314, 422, 482, 614, 842, 926, 1202, 1514, 2246, 2966, 3446, 5102, 5942, 6614, 7082, 7814, 8846, 9662, 10226, 11402, 12014, 12326, 12962, 16022, 16382, 19802, 20606, 22262, 24422, 24866, 27614, 28562, 34586, 38366, 40046
Offset: 1

Views

Author

Giovanni Teofilatto, May 21 2005

Keywords

Comments

Twice A002383.
Also semiprimes n such that 2*n - 3 is a square. - Giovanni Teofilatto, Dec 29 2005. This coincidence was noticed by Andrew S. Plewe. Proof that this is the same sequence: If X is n^2+(n+1)^2+1, then 2X-3 is 4n^2+4n+1 = (2n+1)^2. And if 2X-3 is a square, then since it's odd, 2X-3 = (2n+1)^2 and X = n^2+(n+1)^2+1. - Don Reble, Apr 18 2007

Examples

			a(1)=6 because 1^2 + 2^2 + 1 = 6 = 2*3;
a(2)=14 because 2^2 + 3^2 + 1 = 14 = 2*7;
a(3)=26 because 3^2 + 4^2 + 1 = 26 = 13*2.
		

Crossrefs

Programs

  • Mathematica
    2(#^2 + # + 1) & /@ Select[ Range[144], PrimeQ[ #^2 + # + 1] &] (* Robert G. Wilson v, May 28 2005 *)
    fQ[n_] := Plus @@ Last /@ FactorInteger@n == 2 && IntegerQ@Sqrt[2n - 3]; Select[ Range@43513, fQ[ # ] &] (* Robert G. Wilson v *)
  • PARI
    for(n=2,100000,if(bigomega(n)==2&&issquare(2*n-3),print1(n,","))) /* Lambert Herrgesell */

Formula

a(n) = 2*A002383(n).
a(n) = 2*(A002384(n)^2+A002384(n)+1).

Extensions

Edited by Robert G. Wilson v, May 28 2005
Re-edited by N. J. A. Sloane, Apr 18 2007

A174967 Smallest number of the form k^2 + k + 1 with n distinct prime divisors.

Original entry on oeis.org

1, 3, 21, 273, 10101, 316407, 6914271, 2424626841, 346084535811, 6177672967557, 1741866776384007, 92264158181274807, 103008522046409631057, 22810816825458528984663, 2220066397007943013450011, 545889722100356705628041121, 73293936170018923619553695493
Offset: 0

Views

Author

Michel Lagneau, Apr 02 2010

Keywords

Comments

If k == 2 (mod 3), all prime divisors of k^2 + k + 1 are congruent to 1 (mod 3), and if k == 1 (mod 3), the number 3 is divisor, and the other divisors are congruent to 1 (mod 3).
Proof: first case: k == 2 (mod 3): let q divide k^2 + k + 1. Then 4q divides 4*(k^2 + k + 1) = (2k+1)^2 + 3, and (-3/q)=1, where (a/b) is the Legendre symbol. By using the law of quadratic reciprocity, we obtain (-3/q) = (-1/q)(3/q) = (-1/q)(q/3)(-1)^((q-1)/2)(3-1)/2)) = ((-1)^(q-1)/2)((-1)^(q-1)/2)(q/3) = (q/3). Suppose q !== 1 (mod 3). Then k^2 + k + 1 !== 0 (mod 3) => q == 2 (mod 3), and then (q/3) = -1 => (-3/q) = -1, a contradiction. So q == 1 (mod 3).
Second case: k == 1 (mod 3) => 3 is divisor of k^2 + k + 1, and the other divisors q == 1 (mod 3).
a(11) <= 4943071434145592163, a(12) <= 2702887058650660754061, a(13) <= 896265629366361887178273, a(14) <= 72053193593257327979705541. - Michael S. Branicky, Mar 21 2021
Is a(n) squarefree? The first 16 terms are. - David A. Corneth, Mar 21 2021

Examples

			21 = 3*7;
273 = 3*7*13;
10101 = 3*7*13*37;
316407 = 3*7*13*19*61;
6914271 = 3*7*13*19*31*43;
2424626841 = 3*7*13*19*61*79*97;
346084535811 = 3*7*19*37*43*67*79*103;
6177672967557 = 3*7*13*19*31*43*61*97*151;
1741866776384007 = 3*7*13*19*31*37*43*67*151*673.
		

References

  • L. Poletti, Le serie dei numeri primi appartenente alle due forme quadratiche (A) n^2+n+1 e (B) n^2+n-1 per l'intervallo compreso entro 121 milioni, e cioè per tutti i valori di n fino a 11000, Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, s. 6, v. 3 (1929), pages 193-218.

Crossrefs

Programs

  • Maple
    A174967 := proc(n)
            for k from 1 do
                    a := k^2+k+1 ;
                    if A001221(a) = n then
                            return a;
                    end if;
            end do:
    end proc: # R. J. Mathar, Jul 06 2012
  • Python
    from sympy import primefactors
    def a(n):
      k = 1
      while len(primefactors(k**2 + k + 1)) != n: k += 1
      return k**2 + k + 1
    print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Mar 21 2021

Extensions

a(10) from Michael S. Branicky, Mar 21 2021
a(0), a(11)-a(16) from David A. Corneth, Mar 21 2021

A236056 Numbers k such that k^2 +- k +- 1 is prime for all four possibilities.

Original entry on oeis.org

3, 6, 21, 456, 1365, 2205, 2451, 2730, 8541, 18486, 32199, 32319, 32781, 45864, 61215, 72555, 72561, 82146, 83259, 86604, 91371, 95199, 125334, 149331, 176889, 182910, 185535, 210846, 225666, 226254, 288420, 343161, 350091, 403941, 411501, 510399, 567204
Offset: 1

Views

Author

Derek Orr, Jan 18 2014

Keywords

Comments

The only prime in this sequence is a(1) = 3.

Examples

			1365^2 + 1365 + 1 = 1864591,
1365^2 + 1365 - 1 = 1864589,
1365^2 - 1365 + 1 = 1861861, and
1365^2 - 1365 - 1 = 1861859 are all prime, so 1365 is a term of this sequence.
		

Crossrefs

Numbers in the intersection of A002384, A045546, A055494, and A002328.
Numbers in the intersection of A131530 and A088485.

Programs

  • Maple
    q:= k-> andmap(isprime, [seq(seq(k^2+i+j, j=[k, -k]), i=[1, -1])]):
    select(q, [3*t$t=1..200000])[];  # Alois P. Heinz, Feb 25 2020
  • Mathematica
    Select[Range[568000],AllTrue[Flatten[{#^2+#+{1,-1},#^2-#+{1,-1}},1],PrimeQ]&] (* Harvey P. Dale, Jul 31 2022 *)
  • Python
    import sympy
    from sympy import isprime
    {print(p) for p in range(10**6) if isprime(p**2+p+1) and isprime(p**2-p+1) and isprime(p**2+p-1) and isprime(p**2-p-1)}

A067664 Numbers n such that n^2 + 1 and n^2 + n + 1 are primes.

Original entry on oeis.org

1, 2, 6, 14, 20, 24, 54, 66, 90, 110, 150, 176, 206, 236, 314, 584, 644, 686, 696, 860, 864, 890, 920, 950, 960, 1070, 1146, 1274, 1314, 1340, 1434, 1440, 1494, 1566, 1616, 1644, 1676, 1700, 1716, 1970, 1974, 2054, 2064, 2136, 2360, 2430, 2456, 2604, 2646
Offset: 1

Views

Author

Benoit Cloitre, Feb 23 2002

Keywords

Comments

All the terms are even numbers except for a(1) = 1. - Metin Sariyar, Nov 23 2019

Crossrefs

Programs

  • Magma
    [n: n in [0..10000]| IsPrime(n^2+1) and IsPrime(n^2+n+1)] // Vincenzo Librandi, Aug 07 2010
  • Mathematica
    Join[{1}, Select[Range[2, 10^6, 2], PrimeQ[#^2+1]&&PrimeQ[#^2+#+1]&]] (* Metin Sariyar, Nov 23 2019 *)
Previous Showing 51-60 of 71 results. Next