cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 62 results. Next

A065453 Decimal expansion of imaginary part of 4th nontrivial zero of Riemann zeta function.

Original entry on oeis.org

3, 0, 4, 2, 4, 8, 7, 6, 1, 2, 5, 8, 5, 9, 5, 1, 3, 2, 1, 0, 3, 1, 1, 8, 9, 7, 5, 3, 0, 5, 8, 4, 0, 9, 1, 3, 2, 0, 1, 8, 1, 5, 6, 0, 0, 2, 3, 7, 1, 5, 4, 4, 0, 1, 8, 0, 9, 6, 2, 1, 4, 6, 0, 3, 6, 9, 9, 3, 3, 2, 9, 3, 8, 9, 3, 3, 3, 2, 7, 7, 9, 2, 0, 2, 9, 0, 5, 8, 4, 2, 9, 3, 9, 0, 2, 0, 8, 9, 1
Offset: 2

Views

Author

N. J. A. Sloane, Nov 24 2001

Keywords

Comments

See A002410 and A058303 for more information.

Examples

			The zero is at 1/2 + i * 30.42487612585951321031189753058409132...
		

Crossrefs

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4: this), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (round), A013629 (floor), A092783 (ceiling).

Programs

A092783 Ceiling of imaginary parts of zeros of Riemann zeta function.

Original entry on oeis.org

15, 22, 26, 31, 33, 38, 41, 44, 49, 50, 53, 57, 60, 61, 66, 68, 70, 73, 76, 78, 80, 83, 85, 88, 89, 93, 95, 96, 99, 102, 104, 106, 108, 112, 112, 115, 117, 119, 122, 123, 125, 128, 130, 132, 134, 135, 139, 140, 142, 144, 147, 148, 151, 151, 154, 157, 158, 159, 162, 164, 166, 168, 170, 170, 174
Offset: 1

Views

Author

Jorge Coveiro, Apr 14 2004

Keywords

Crossrefs

Cf. A002410: nearest integer to imaginary part of n-th zero of Riemann zeta function (main entry).
Cf. A013629: floor of imaginary parts of zeros of Riemann zeta function.
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).

Programs

Formula

a(n) = 1+A013629(n). - Robert G. Wilson v, Jan 27 2015

Extensions

More terms, link and cross-references from M. F. Hasler, Nov 23 2018

A192492 Decimal expansion of imaginary part of 5th nontrivial zero of Riemann zeta function.

Original entry on oeis.org

3, 2, 9, 3, 5, 0, 6, 1, 5, 8, 7, 7, 3, 9, 1, 8, 9, 6, 9, 0, 6, 6, 2, 3, 6, 8, 9, 6, 4, 0, 7, 4, 9, 0, 3, 4, 8, 8, 8, 1, 2, 7, 1, 5, 6, 0, 3, 5, 1, 7, 0, 3, 9, 0, 0, 9, 2, 8, 0, 0, 0, 3, 4, 4, 0, 7, 8, 4, 8, 1, 5, 6, 0, 8, 6, 3, 0, 5, 5, 1, 0, 0, 5, 9, 3, 8, 8, 4, 8, 4, 9, 6, 1, 3, 5, 3
Offset: 2

Views

Author

Alonso del Arte, Jul 02 2011

Keywords

Comments

The real part of the 5th nontrivial zero is of course 1/2 (A020761; the Riemann hypothesis is here assumed to be true).

Examples

			The zero is at 1/2 + i * 32.9350615877391896906623689640749...
		

Crossrefs

Cf. A002410: nearest integer to imaginary part of n-th zero of Riemann zeta function (main entry); also A013629 (floor) and A092783 (ceiling).
The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453). Others are A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
The real parts of the trivial zeros are given by A005843 multiplied by -1 (and ignoring the initial 0 of that sequence).

Programs

  • Mathematica
    (* ZetaZero was introduced in Version 6.0 *) RealDigits[ZetaZero[5], 10, 100][[1]]
  • PARI
    solve(y=32,33,real(zeta(1/2+y*I))) \\ Charles R Greathouse IV, Mar 10 2016
    
  • PARI
    lfunzeros(lzeta,[32,33])[1] \\ Charles R Greathouse IV, Mar 10 2016

Extensions

Example and cross-references edited by M. F. Hasler, Nov 23 2018

A305741 Decimal expansion of imaginary part of 6th nontrivial zero of Riemann zeta function.

Original entry on oeis.org

3, 7, 5, 8, 6, 1, 7, 8, 1, 5, 8, 8, 2, 5, 6, 7, 1, 2, 5, 7, 2, 1, 7, 7, 6, 3, 4, 8, 0, 7, 0, 5, 3, 3, 2, 8, 2, 1, 4, 0, 5, 5, 9, 7, 3, 5, 0, 8, 3, 0, 7, 9, 3, 2, 1, 8, 3, 3, 3, 0, 0, 1, 1, 1, 3, 6, 2, 2, 1, 4, 9, 0, 8, 9, 6, 1, 8, 5, 3, 7, 2, 6, 4, 7, 3, 0, 3, 2, 9, 1, 0
Offset: 2

Views

Author

Seiichi Manyama, Jun 23 2018

Keywords

Examples

			The zero is at 1/2 + i * 37.58617815882567125721776348070533282140559735083...
		

Crossrefs

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), this sequence (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling).

Programs

  • Mathematica
    RealDigits[Im[ZetaZero[6]], 10, 120][[1]] (* Vaclav Kotesovec, Jun 23 2018 *)
  • PARI
    lfunzeros(1,[37,38])[1] \\ M. F. Hasler, Nov 23 2018

A305742 Decimal expansion of imaginary part of 7th nontrivial zero of Riemann zeta function.

Original entry on oeis.org

4, 0, 9, 1, 8, 7, 1, 9, 0, 1, 2, 1, 4, 7, 4, 9, 5, 1, 8, 7, 3, 9, 8, 1, 2, 6, 9, 1, 4, 6, 3, 3, 2, 5, 4, 3, 9, 5, 7, 2, 6, 1, 6, 5, 9, 6, 2, 7, 7, 7, 2, 7, 9, 5, 3, 6, 1, 6, 1, 3, 0, 3, 6, 6, 7, 2, 5, 3, 2, 8, 0, 5, 2, 8, 7, 2, 0, 0, 7, 1, 2, 8, 2, 9, 9, 6, 0, 0, 3, 7, 1, 9
Offset: 2

Views

Author

Seiichi Manyama, Jun 23 2018

Keywords

Examples

			The zero is at 1/2 + i * 40.918719012147495187398126914633254395726165962777...
		

Crossrefs

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), this sequence (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling).

Programs

  • Mathematica
    RealDigits[Im[ZetaZero[7]], 10, 120][[1]] (* Vaclav Kotesovec, Jun 23 2018 *)
  • PARI
    lfunzeros(1,[40,41])[1] \\ M. F. Hasler, Nov 23 2018

A305743 Decimal expansion of imaginary part of 8th nontrivial zero of Riemann zeta function.

Original entry on oeis.org

4, 3, 3, 2, 7, 0, 7, 3, 2, 8, 0, 9, 1, 4, 9, 9, 9, 5, 1, 9, 4, 9, 6, 1, 2, 2, 1, 6, 5, 4, 0, 6, 8, 0, 5, 7, 8, 2, 6, 4, 5, 6, 6, 8, 3, 7, 1, 8, 3, 6, 8, 7, 1, 4, 4, 6, 8, 7, 8, 8, 9, 3, 6, 8, 5, 5, 2, 1, 0, 8, 8, 3, 2, 2, 3, 0, 5, 0, 5, 3, 6, 2, 6, 4, 5, 6, 3, 4, 9, 3, 7, 1
Offset: 2

Views

Author

Seiichi Manyama, Jun 23 2018

Keywords

Examples

			The zero is at 1/2 + I*43.3270732809149995194961221654068... - _M. F. Hasler_, Nov 21 2018
		

Crossrefs

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), this sequence (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling).

Programs

  • Mathematica
    RealDigits[Im[ZetaZero[8]], 10, 120][[1]] (* Vaclav Kotesovec, Jun 23 2018 *)
  • PARI
    solve(X=43,44,imag(zeta(0.5+X*I))) \\ M. F. Hasler, Nov 21 2018
    
  • PARI
    lfunzeros(1,[43,44])[1] \\ M. F. Hasler, Nov 23 2018

A305744 Decimal expansion of imaginary part of 9th nontrivial zero of Riemann zeta function.

Original entry on oeis.org

4, 8, 0, 0, 5, 1, 5, 0, 8, 8, 1, 1, 6, 7, 1, 5, 9, 7, 2, 7, 9, 4, 2, 4, 7, 2, 7, 4, 9, 4, 2, 7, 5, 1, 6, 0, 4, 1, 6, 8, 6, 8, 4, 4, 0, 0, 1, 1, 4, 4, 4, 2, 5, 1, 1, 7, 7, 7, 5, 3, 1, 2, 5, 1, 9, 8, 1, 4, 0, 9, 0, 2, 1, 6, 4, 1, 6, 3, 0, 8, 2, 8, 1, 3, 3, 0, 3, 3, 5, 3, 7, 2, 3
Offset: 2

Views

Author

Seiichi Manyama, Jun 23 2018

Keywords

Examples

			The zero is at 1/2 + i * 48.0051508811671597279424727494275160416868440011444251...
		

Crossrefs

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), this sequence (k=9), A306004 (k=10).
Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling).

Programs

  • Mathematica
    RealDigits[Im[ZetaZero[9]], 10, 120][[1]] (* Vaclav Kotesovec, Jun 23 2018 *)
  • PARI
    lfunzeros(1,[48,49])[1] \\ M. F. Hasler, Nov 23 2018

Extensions

Edited (example, link, cross-references) by M. F. Hasler, Nov 23 2018

A306004 Decimal expansion of imaginary part of 10th nontrivial zero of Riemann zeta function.

Original entry on oeis.org

4, 9, 7, 7, 3, 8, 3, 2, 4, 7, 7, 6, 7, 2, 3, 0, 2, 1, 8, 1, 9, 1, 6, 7, 8, 4, 6, 7, 8, 5, 6, 3, 7, 2, 4, 0, 5, 7, 7, 2, 3, 1, 7, 8, 2, 9, 9, 6, 7, 6, 6, 6, 2, 1, 0, 0, 7, 8, 1, 9, 5, 5, 7, 5, 0, 4, 3, 3, 5, 1, 1, 6, 1, 1, 5, 1, 5, 7, 3, 9, 2, 7, 8, 7, 3, 2, 7, 0, 7, 5, 0
Offset: 2

Views

Author

Seiichi Manyama, Jun 23 2018

Keywords

Examples

			The zero is at 1/2 + i * 49.77383247767230218191678467856372405772317829967666...
		

Crossrefs

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), this sequence (k=10).
Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling).

Programs

  • Mathematica
    RealDigits[Im[ZetaZero[10]], 10, 120][[1]] (* Vaclav Kotesovec, Jun 23 2018 *)
  • PARI
    lfunzeros(1,[49,50])[1] \\ M. F. Hasler, Nov 23 2018

Extensions

Edited (added link, example, cross-reference) by M. F. Hasler, Nov 23 2018

A254297 Consider the nontrivial zeros of the Riemann zeta function on the critical line 1/2 + i*t and the gap, or first difference, between two consecutive such zeros; a(n) is the lesser of the two zeros at a place where the gap attains a new minimum.

Original entry on oeis.org

1, 2, 3, 5, 8, 10, 14, 20, 25, 28, 35, 64, 72, 92, 136, 160, 187, 213, 299, 316, 364, 454, 694, 923, 1497, 3778, 4766, 6710, 18860, 44556, 73998, 82553, 87762, 95249, 354770, 415588, 420892, 1115579, 8546951
Offset: 1

Views

Author

Robert G. Wilson v, Jan 27 2015

Keywords

Comments

Since all zeros are assumed to be on the critical line, the gap, or first difference, between two consecutive zeros is measured as the difference between the two imaginary parts.
Inspired by A002410.
No other terms < 10000000. The minimum gap so far is 0.002323...

Examples

			a(1)=1 since the first Riemann zeta zero, 1/2 + i*14.13472514... (A058303) has no previous zero, so its gap is measured from 0.
a(2)=2 since the second Riemann zeta zero, 1/2 + i*21.02203964... (A065434) has a gap of 6.887314497... which is less than the previous gap of ~14.13472514.
a(3)=3 since the third Riemann zeta zero, 1/2 + i*25.01085758... (A065452) has a gap of 3.988817941... which is less than ~6.887314497.
The fourth Riemann zeta zero, 1/2 + i*30.42487613... (A065453) has a gap of 5.414018546... which is not less than ~6.887314497 and therefore is not in the sequence.
a(4)=5 since the fifth Riemann zeta zero, 1/2 + i*32.93506159... (A192492) has a gap of 2.510185462... which is less than ~3.988817941.
a(5)=8 since the eighth Riemann zeta zero, 1/2 + i*43.32707328...  has a gap of 2.408354269... which is less than ~2.510185462.
		

Crossrefs

Programs

  • Mathematica
    k = 1; mn = Infinity; y = 0; lst = {}; While[k < 10001, z = N[ Im@ ZetaZero@ k, 64]; If[z - y < mn, mn = z - y; AppendTo[lst, k]]; y = z; k++]; lst

Formula

a(n) = A326502(n) + 1. - Artur Jasinski, Oct 24 2019

Extensions

a(38) from Arkadiusz Wesolowski, Nov 08 2015
a(39) from Artur Jasinski, Oct 24 2019

A255739 Indices of nontrivial zeros of Riemann zeta function whose imaginary part sets a record for the absolute minimal difference from an integer.

Original entry on oeis.org

1, 2, 3, 9, 51, 473, 3233, 7657, 7722, 20002, 124170, 126137, 977155
Offset: 1

Views

Author

Omar E. Pol, Mar 17 2015

Keywords

Comments

We consider here the imaginary part of 1/2 + iy = z, for which Zeta(z) is a zero.
No more terms below 600000. - Robert G. Wilson v, Sep 30 2015
Is there an Im(rho_k) that is also a positive integer? Is there a minimum gap between an Im(rho_k) and a positive integer? At present it is not known whether this sequence is finite or infinite. - Omar E. Pol, Oct 13 2015
No more terms below 2001052. - Amiram Eldar, Aug 10 2023

Examples

			-------------------------------------------------------------------
                                     Absolute      New
k      Im(rho_k)       A002410(k)   difference   record   n   a(n)
-------------------------------------------------------------------
1    14.134725142    >    14        0.134725142    Yes    1    1
2    21.022039639    >    21        0.022039639    Yes    2    2
3    25.010857580    >    25        0.010857580    Yes    3    3
4    30.424876126    >    30        0.424876126    Not
5    32.935061588    <    33        0.064938412    Not
6    37.586178159    <    38        0.413821841    Not
7    40.918719012    <    41        0.081280988    Not
8    43.327073281    >    43        0.327073281    Not
9    48.005150881    >    48        0.005150881    Yes    4    9
10   49.773832478    <    50        0.226167522    Not
...
where rho_k is the k-th nontrivial zero of Riemann zeta function.
We computed more digits of Im(rho_k), but in the above table only 9 digits beyond the decimal point appear.
		

Crossrefs

Programs

  • Mathematica
    mn = Infinity; k = 1; lst = {}; While[k < 2501, a = N[ Abs[ Im[ ZetaZero[
    k]] - Round[ Im[ ZetaZero[ k]] ]], 32]; If[a < mn, AppendTo[lst, k];
    Print[k]; mn = a]; k++]; lst (* Robert G. Wilson v, Sep 29 2015 *)

Formula

A255742(n) = A002410(a(n)).

Extensions

a(6)-a(10) from Robert G. Wilson v, Sep 29 2015
a(11)-a(12) from Robert G. Wilson v, Sep 30 2015
a(13) using Odlyzko's tables added by Amiram Eldar, Aug 10 2023
Previous Showing 11-20 of 62 results. Next