A273461
Number of physically stable n X n placements of water source-blocks in Minecraft.
Original entry on oeis.org
1, 2, 9, 40, 484, 9717, 338724, 21624680, 2504301849, 520443847520, 195145309791364, 131850659243316222, 160668896658179472676, 352891729183598844656996, 1397187513066371784602204416, 9972288382286063615850619475640
Offset: 0
a(2) = 9: {{}, {(2,2)}, {(2,1)}, {(2,1),(2,2)}, {(1,2)}, {(1,2),(2,2)}, {(1,1)}, {(1,1),(2,1)}, {(1,1),(1,2)}}.
The one-dimensional version is
A006498.
-
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
allflows[n_]:=stableSets[Join@@Array[List,{n,n}],Function[{v,w},Plus@@Abs/@(w-v)===2]];
Table[Length[allflows[i]],{i,6}] (* Gus Wiseman, May 23 2016 *)
A274805
The logarithmic transform of sigma(n).
Original entry on oeis.org
1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177
Offset: 1
Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = 1*x(1)
a(2) = 1*x(2) - x(1)^2
a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3
a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4
a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 1..451
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Logarithmic Transform.
Cf.
A112005,
A007553,
A062740,
A007447,
A062738,
A033464,
A116652,
A002031,
A003704,
A003707,
A155585,
A000142,
A226968.
-
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.
-
a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)
-
N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017
A283500
Triangle read by rows: T(n,k) = number of n X n (0,1) matrices with at most k 1's in each row or column.
Original entry on oeis.org
2, 7, 16, 34, 265, 512, 209, 7343, 41503, 65536, 1546, 304186, 6474726, 24997921, 33554432, 13327, 17525812, 1709852332, 21252557377, 57366997447, 68719476736, 130922, 1336221251, 702998475376, 34215495252681, 252540841305558, 505874809287625
Offset: 1
Triangle begins:
2;
7, 16;
34, 265, 512;
209, 7343, 41503, 65536;
1546, 304186, 6474726, 24997921, 33554432;
13327, 17525812, 1709852332, 21252557377, 57366997447, 68719476736;
...
A329871
Number of static n X n placements of water source-blocks in Minecraft.
Original entry on oeis.org
1, 2, 10, 55, 754, 18853, 82931, 70143802, 11087020614, 3243227117597, 1772826333285009, 1806938280429412270, 3430002591378184399879, 12137184871791092506807847, 80047171080361800628780500638, 983838070049011459232146327319193
Offset: 0
The one-dimensional case is
A005251.
-
vdist[v_,w_]:=Total[Abs[v-w]];
flowdown[prs_]:=Union[prs,With[{ovs=Select[Subsets[prs,{2}],vdist@@#==2&]},Union@@Function[{v,w},Select[Tuples[{Range[Min@@Union[First/@prs],Max@@Union[First/@prs]],Range[Min@@Union[Last/@prs],Max@@Union[Last/@prs]]}],vdist[v,#]==1&&vdist[w,#]==1&]]@@@ovs]];
Table[Length[Select[Subsets[Tuples[Range[n],2]],flowdown[#]==#&]],{n,0,3}]
A344114
a(n) = 2^(n^2) - n!.
Original entry on oeis.org
1, 14, 506, 65512, 33554312, 68719476016, 562949953416272, 18446744073709511296, 2417851639229258349049472, 1267650600228229401496699576576, 2658455991569831745807614120520772352, 22300745198530623141535718272648361026978816, 748288838313422294120286634350736906063831234982912
Offset: 1
a(1) = 2^(1^2) - 1! = 1;
a(2) = 2^(2^2) - 2! = 14;
a(3) = 2^(3^2) - 3! = 506.
A055548
Number of normal n X n (-1,1)-matrices.
Original entry on oeis.org
2, 12, 80, 2096, 49792, 3449088, 357236224, 84783217408
Offset: 1
- W. H. Press et al., Numerical Recipes, Cambridge, 1986; Chapter 11.
-
NormaQ(a,n) = { my(aT) ; aT=mattranspose(a) ; return( a*aT == aT*a ); }
combMat(no,n) = { my(a,noshif) ; a = matrix(n,n) ; noshif=no ; for(co=1,n, for(ro=1,n, if( (noshif %2)== 1,a[ro,co] = 1, a[ro,co] = -1) ; noshif = floor(noshif/2) ; ) ) ; return(a) ; }
{ for (n = 1, 10, count = 0; a = matrix(n,n) ; for( no=0,2^(n^2)-1, a = combMat(no,n) ; count += NormaQ(a,n) ; /* if(no%1000==0,print(n," ",(no/2^(n^2)+0.)," ",count)) ; */ ) ; print(count) ; ) } \\ R. J. Mathar, Mar 14 2006
A086324
Number of n X n circulant singular matrices over GF(2).
Original entry on oeis.org
1, 2, 5, 8, 17, 40, 79, 128, 323, 544, 1025, 2560, 4097, 10112, 22643, 32768, 66047, 165376, 262145, 557056, 1513709, 2099200, 4198399, 10485760, 17825807, 33562624, 84672701, 165675008, 268435457, 741965824, 1259979967, 2147483648, 5378137091, 8656912384
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 30 2003
A135748
a(n) = Sum_{k=0..n} binomial(n,k)*2^(k^2).
Original entry on oeis.org
1, 3, 21, 567, 67689, 33887403, 68921796861, 563431696713567, 18451249599365935569, 2418017680197896730749523, 1267674779574792745831097365221, 2658469935859419140387217204140789127, 22300777100086187451068223319189800258419769
Offset: 0
-
Table[Sum[Binomial[n,k]2^k^2,{k,0,n}],{n,0,15}] (* Harvey P. Dale, May 30 2013 *)
-
{a(n)=sum(k=0,n,binomial(n,k)*2^(k^2))}
A158099
Euler transform of square powers of 2: [2,2^4,2^9,...,2^(n^2),...].
Original entry on oeis.org
1, 2, 19, 548, 66749, 33695574, 68787981855, 563088066184424, 18447871299903970005, 2417888543453357864445634, 1267655436282309648681395304255, 2658458526916981532120588021462151100, 22300750515466692968838881088968809185127601
Offset: 0
G.f.: A(x) = 1 + 2*x + 19*x^2 + 548*x^3 + 66749*x^4 +...
A(x) = 1/[(1-x)^2*(1-x^2)^(2^4)*(1-x^3)^(2^9)*(1-x^4)^(2^16)*...].
-
with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= etr(n->2^(n^2)):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 03 2012
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Function[{n}, 2^(n^2)]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
-
a(n)=polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^(2^(k^2))),n)
-
{a(n)=polcoeff(exp(sum(m=1,n,sumdiv(m,d,d*2^(d^2))*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Oct 18 2009
A344115
Triangle read by rows: T(n,k) is the number of relations from an n-element set to a k-element set that are not one-to-one functions.
Original entry on oeis.org
1, 2, 14, 5, 58, 506, 12, 244, 4072, 65512, 27, 1004, 32708, 1048456, 33554312, 58, 4066, 262024, 16776856, 1073741104, 68719476016, 121, 16342, 2096942, 268434616, 34359735848, 4398046506064, 562949953416272, 248, 65480, 16776880, 4294965616, 1099511621056
Offset: 1
For T(2,2): the number of relations is 2^4 and the number of one-to-one functions is 2, so 2^4 - 2 = 14 and thus T(2,2) = 14.
Triangle T(n,k) begins:
1;
2, 14;
5, 58, 506;
12, 244, 4072, 65512;
27, 1004, 32708, 1048456, 33554312;
-
Table[2^(n*k) - k!/(k - n)!, {k, 10}, {n, k}] // Flatten
Comments