cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 126 results. Next

A273461 Number of physically stable n X n placements of water source-blocks in Minecraft.

Original entry on oeis.org

1, 2, 9, 40, 484, 9717, 338724, 21624680, 2504301849, 520443847520, 195145309791364, 131850659243316222, 160668896658179472676, 352891729183598844656996, 1397187513066371784602204416, 9972288382286063615850619475640
Offset: 0

Views

Author

Gus Wiseman, May 23 2016

Keywords

Comments

In Minecraft worlds, a source block of water can be reacted with another source block, two blocks away. This reaction creates a third "infinite" source block in the unoccupied intermediate block, so called because if the intermediate water source is destroyed or picked up by a player using a bucket, it will immediately regenerate itself.
A placement of water at several positions in an n X n board is said to be *stable* if no infinite water physics can in fact occur (under otherwise optimal conditions). This means that the total quantity of water in the system is held constant.
In short, no two source blocks can be graph-distance 2 from each other. - Gus Wiseman, Nov 27 2019
Often incorrectly described as cellular automata, the observed behaviors of liquids within a board are inseparable in certain ways from states of affair outside of the board and events outside of the system. This aspect of Minecraft is poorly understood.

Examples

			a(2) = 9: {{}, {(2,2)}, {(2,1)}, {(2,1),(2,2)}, {(1,2)}, {(1,2),(2,2)}, {(1,1)}, {(1,1),(2,1)}, {(1,1),(1,2)}}.
		

Crossrefs

The one-dimensional version is A006498.
Dominated by A329871.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    allflows[n_]:=stableSets[Join@@Array[List,{n,n}],Function[{v,w},Plus@@Abs/@(w-v)===2]];
    Table[Length[allflows[i]],{i,6}] (* Gus Wiseman, May 23 2016 *)

Extensions

a(7) from Tae Lim Kook, May 25 2016
a(8) from Tae Lim Kook, May 29 2016
a(7)-a(8) corrected by Christopher Cormier, Dec 17 2019
a(9)-a(15) from Christopher Cormier, Dec 19 2019

A274805 The logarithmic transform of sigma(n).

Original entry on oeis.org

1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The logarithmic transform [LOG] transforms an input sequence b(n) into the output sequence a(n). The LOG transform is the inverse of the exponential transform [EXP], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell’s formula. For information about the EXP transform see A274804. The logarithmic transform is related to the inverse multinomial transform, see A274844 and the first formula.
The definition of the LOG transform, see the second formula, shows that n >= 1. To preserve the identity EXP[LOG[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the LOG transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.
We observe that the logarithmic transform leaves the value of a(0) undefined.
The Maple programs can be used to generate the logarithmic transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A001187 and the first formula. The second program uses the definition of the logarithmic transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the logarithmic transform, see A274804.

Examples

			Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = 1*x(1)
a(2) = 1*x(2) - x(1)^2
a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3
a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4
a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Some LOG transform pairs are, n >= 1: A006125(n-1) and A033678(n); A006125(n) and A001187(n); A006125(n+1) and A062740(n); A000045(n) and A112005(n); A000045(n+1) and A007553(n); A000040(n) and A007447(n); A000051(n) and (-1)*A263968(n-1); A002416(n) and A062738(n); A000290(n) and A033464(n-1); A029725(n-1) and A116652(n-1); A052332(n) and A002031(n+1); A027641(n)/A027642(n) and (-1)*A060054(n+1)/(A075180(n-1).

Programs

  • Maple
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.
  • Mathematica
    a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)
  • PARI
    N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017

Formula

a(n) = b(n) - Sum_{k = 1..n-1}((k*binomial(n, k)*b(n-k)*a(k))/n), n >= 1, with b(n) = A000203(n) = sigma(n).
E.g.f. log(1+ Sum_{n >= 1}(b(n)*x^n/n!)), n >= 1, with b(n) = A000203(n) = sigma(n).

A283500 Triangle read by rows: T(n,k) = number of n X n (0,1) matrices with at most k 1's in each row or column.

Original entry on oeis.org

2, 7, 16, 34, 265, 512, 209, 7343, 41503, 65536, 1546, 304186, 6474726, 24997921, 33554432, 13327, 17525812, 1709852332, 21252557377, 57366997447, 68719476736, 130922, 1336221251, 702998475376, 34215495252681, 252540841305558, 505874809287625
Offset: 1

Views

Author

R. J. Mathar, Mar 09 2017

Keywords

Examples

			Triangle begins:
2;
7,     16;
34,    265,      512;
209,   7343,     41503,      65536;
1546,  304186,   6474726,    24997921,    33554432;
13327, 17525812, 1709852332, 21252557377, 57366997447, 68719476736;
...
		

Crossrefs

Cf. A002720 (column k=1), A197458 (column k=2), A008300 (exactly k 1s).
Main diagonal and first lower diagonal give: A002416, A048291.
Cf. A247158 (k=n/2).

A329871 Number of static n X n placements of water source-blocks in Minecraft.

Original entry on oeis.org

1, 2, 10, 55, 754, 18853, 82931, 70143802, 11087020614, 3243227117597, 1772826333285009, 1806938280429412270, 3430002591378184399879, 12137184871791092506807847, 80047171080361800628780500638, 983838070049011459232146327319193
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2019

Keywords

Comments

In Minecraft worlds, a source block of water can be reacted with another source block, two blocks away, linearly or diagonally. This reaction creates a third "infinite" source block in the unoccupied intermediate block or blocks, so called because if the intermediate water source is destroyed or picked up by a player using a bucket, it will immediately regenerate itself.
A placement of water at several positions in an n X n board is said to be static if no infinite water sources are created that are not already present. In particular, the total quantity of water in the system is held constant.

Crossrefs

Dominates A273461.
The one-dimensional case is A005251.

Programs

  • Mathematica
    vdist[v_,w_]:=Total[Abs[v-w]];
    flowdown[prs_]:=Union[prs,With[{ovs=Select[Subsets[prs,{2}],vdist@@#==2&]},Union@@Function[{v,w},Select[Tuples[{Range[Min@@Union[First/@prs],Max@@Union[First/@prs]],Range[Min@@Union[Last/@prs],Max@@Union[Last/@prs]]}],vdist[v,#]==1&&vdist[w,#]==1&]]@@@ovs]];
    Table[Length[Select[Subsets[Tuples[Range[n],2]],flowdown[#]==#&]],{n,0,3}]

Extensions

a(5)-a(6) from Christopher Cormier, Dec 10 2019
a(7)-a(15) from Christopher Cormier, Dec 19 2019

A344114 a(n) = 2^(n^2) - n!.

Original entry on oeis.org

1, 14, 506, 65512, 33554312, 68719476016, 562949953416272, 18446744073709511296, 2417851639229258349049472, 1267650600228229401496699576576, 2658455991569831745807614120520772352, 22300745198530623141535718272648361026978816, 748288838313422294120286634350736906063831234982912
Offset: 1

Views

Author

Mohammad K. Azarian, Jun 04 2021

Keywords

Comments

a(n) is the number of relations on a set with n elements that are not one-to-one functions.

Examples

			a(1) = 2^(1^2) - 1! =   1;
a(2) = 2^(2^2) - 2! =  14;
a(3) = 2^(3^2) - 3! = 506.
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n^2) - n!, {n, 16}] // Flatten

A055548 Number of normal n X n (-1,1)-matrices.

Original entry on oeis.org

2, 12, 80, 2096, 49792, 3449088, 357236224, 84783217408
Offset: 1

Views

Author

Keywords

Comments

Obviously a(n) <= 2^(n^2) = A002416(n) - R. J. Mathar, Mar 14 2006

References

  • W. H. Press et al., Numerical Recipes, Cambridge, 1986; Chapter 11.

Crossrefs

Programs

  • PARI
    NormaQ(a,n) = { my(aT) ; aT=mattranspose(a) ; return( a*aT == aT*a ); }
    combMat(no,n) = { my(a,noshif) ; a = matrix(n,n) ; noshif=no ; for(co=1,n, for(ro=1,n, if( (noshif %2)== 1,a[ro,co] = 1, a[ro,co] = -1) ; noshif = floor(noshif/2) ; ) ) ; return(a) ; }
    { for (n = 1, 10, count = 0; a = matrix(n,n) ; for( no=0,2^(n^2)-1, a = combMat(no,n) ; count += NormaQ(a,n) ; /* if(no%1000==0,print(n," ",(no/2^(n^2)+0.)," ",count)) ; */ ) ; print(count) ; ) } \\ R. J. Mathar, Mar 14 2006

Extensions

a(5) from R. J. Mathar, Mar 14 2006
a(6)-a(7) from Georg Muntingh, Jan 31 2014
Offset corrected and a(8) from Bert Dobbelaere, Sep 21 2020

A086324 Number of n X n circulant singular matrices over GF(2).

Original entry on oeis.org

1, 2, 5, 8, 17, 40, 79, 128, 323, 544, 1025, 2560, 4097, 10112, 22643, 32768, 66047, 165376, 262145, 557056, 1513709, 2099200, 4198399, 10485760, 17825807, 33562624, 84672701, 165675008, 268435457, 741965824, 1259979967, 2147483648, 5378137091, 8656912384
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 30 2003

Keywords

Crossrefs

Formula

a(n) = 2^n - A003473(n).

Extensions

a(10)-a(34) from Alois P. Heinz, Mar 16 2017

A135748 a(n) = Sum_{k=0..n} binomial(n,k)*2^(k^2).

Original entry on oeis.org

1, 3, 21, 567, 67689, 33887403, 68921796861, 563431696713567, 18451249599365935569, 2418017680197896730749523, 1267674779574792745831097365221, 2658469935859419140387217204140789127, 22300777100086187451068223319189800258419769
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2007

Keywords

Comments

a(n) is the number of directed graphs on any subset of a set of n labeled nodes, allowing self-loops (cf. A002416). - Brent A. Yorgey, Mar 23 2021

Crossrefs

Cf. A002416.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]2^k^2,{k,0,n}],{n,0,15}] (* Harvey P. Dale, May 30 2013 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*2^(k^2))}

Formula

a(n) ~ 2^(n^2). - Vaclav Kotesovec, Nov 27 2017

A158099 Euler transform of square powers of 2: [2,2^4,2^9,...,2^(n^2),...].

Original entry on oeis.org

1, 2, 19, 548, 66749, 33695574, 68787981855, 563088066184424, 18447871299903970005, 2417888543453357864445634, 1267655436282309648681395304255, 2658458526916981532120588021462151100, 22300750515466692968838881088968809185127601
Offset: 0

Views

Author

Paul D. Hanna, Mar 20 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 19*x^2 + 548*x^3 + 66749*x^4 +...
A(x) = 1/[(1-x)^2*(1-x^2)^(2^4)*(1-x^3)^(2^9)*(1-x^4)^(2^16)*...].
		

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= etr(n->2^(n^2)):
    seq(a(n), n=0..15);  # Alois P. Heinz, Sep 03 2012
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Function[{n}, 2^(n^2)]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^(2^(k^2))),n)
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sumdiv(m,d,d*2^(d^2))*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Oct 18 2009

Formula

G.f.: A(x) = 1/Product_{n>=1} (1 - x^n)^(2^(n^2)).
G.f.: exp( Sum_{n>=1} L(n)*x^n/n ) where L(n) = Sum_{d|n} d*2^(d^2). [Paul D. Hanna, Oct 18 2009]

A344115 Triangle read by rows: T(n,k) is the number of relations from an n-element set to a k-element set that are not one-to-one functions.

Original entry on oeis.org

1, 2, 14, 5, 58, 506, 12, 244, 4072, 65512, 27, 1004, 32708, 1048456, 33554312, 58, 4066, 262024, 16776856, 1073741104, 68719476016, 121, 16342, 2096942, 268434616, 34359735848, 4398046506064, 562949953416272, 248, 65480, 16776880, 4294965616, 1099511621056
Offset: 1

Views

Author

Mohammad K. Azarian, Jun 06 2021

Keywords

Comments

If n=k, then T(n,k) = 2^(n^2) - n!, which is A344114, and if kA344110.

Examples

			For T(2,2): the number of relations is 2^4 and the number of one-to-one functions is 2, so 2^4 - 2 = 14 and thus T(2,2) = 14.
Triangle T(n,k) begins:
   1;
   2,   14;
   5,   58,   506;
  12,  244,  4072,   65512;
  27, 1004, 32708, 1048456, 33554312;
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n*k) - k!/(k - n)!, {k, 10}, {n, k}] // Flatten

Formula

T(n,k) = 2^(n*k) - k!/(k-n)!, k >= n.
Previous Showing 51-60 of 126 results. Next