cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A099173 Array, A(k,n), read by diagonals: g.f. of k-th row x/(1-2*x-(k-1)*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 5, 8, 5, 0, 1, 2, 6, 12, 16, 6, 0, 1, 2, 7, 16, 29, 32, 7, 0, 1, 2, 8, 20, 44, 70, 64, 8, 0, 1, 2, 9, 24, 61, 120, 169, 128, 9, 0, 1, 2, 10, 28, 80, 182, 328, 408, 256, 10, 0, 1, 2, 11, 32, 101, 256, 547, 896, 985, 512, 11
Offset: 0

Views

Author

Ralf Stephan, Oct 13 2004

Keywords

Examples

			Square array, A(n, k), begins as:
  0, 1, 2,  3,  4,   5,    6,    7,     8, ... A001477;
  0, 1, 2,  4,  8,  16,   32,   64,   128, ... A000079;
  0, 1, 2,  5, 12,  29,   70,  169,   408, ... A000129;
  0, 1, 2,  6, 16,  44,  120,  328,   896, ... A002605;
  0, 1, 2,  7, 20,  61,  182,  547,  1640, ... A015518;
  0, 1, 2,  8, 24,  80,  256,  832,  2688, ... A063727;
  0, 1, 2,  9, 28, 101,  342, 1189,  4088, ... A002532;
  0, 1, 2, 10, 32, 124,  440, 1624,  5888, ... A083099;
  0, 1, 2, 11, 36, 149,  550, 2143,  8136, ... A015519;
  0, 1, 2, 12, 40, 176,  672, 2752, 10880, ... A003683;
  0, 1, 2, 13, 44, 205,  806, 3457, 14168, ... A002534;
  0, 1, 2, 14, 48, 236,  952, 4264, 18048, ... A083102;
  0, 1, 2, 15, 52, 269, 1110, 5179, 22568, ... A015520;
  0, 1, 2, 16, 56, 304, 1280, 6208, 27776, ... A091914;
Antidiagonal triangle, T(n, k), begins as:
  0;
  0,  1;
  0,  1,  2;
  0,  1,  2,  3;
  0,  1,  2,  4,  4;
  0,  1,  2,  5,  8,  5;
  0,  1,  2,  6, 12, 16,   6;
  0,  1,  2,  7, 16, 29,  32,   7;
  0,  1,  2,  8, 20, 44,  70,  64,   8;
  0,  1,  2,  9, 24, 61, 120, 169, 128,   9;
  0,  1,  2, 10, 28, 80, 182, 328, 408, 256,  10;
		

Crossrefs

Rows m: A001477 (m=0), A000079 (m=1), A000129 (m=2), A002605 (m=3), A015518 (m=4), A063727 (m=5), A002532 (m=6), A083099 (m=7), A015519 (m=8), A003683 (m=9), A002534 (m=10), A083102 (m=11), A015520 (m=12), A091914 (m=13).
Columns q: A000004 (q=0), A000012 (q=1), A009056 (q=2), A008586 (q=3).
Main diagonal gives A357502.

Programs

  • Magma
    A099173:= func< n,k | (&+[n^j*Binomial(k,2*j+1): j in [0..Floor(k/2)]]) >;
    [A099173(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    A[k_, n_]:= Which[k==0, n, n==0, 0, True, ((1+Sqrt[k])^n - (1-Sqrt[k])^n)/(2 Sqrt[k])]; Table[A[k-n, n]//Simplify, {k, 0, 12}, {n, 0, k}]//Flatten (* Jean-François Alcover, Jan 21 2019 *)
  • PARI
    A(k,n)=sum(i=0,n\2,k^i*binomial(n,2*i+1))
    
  • SageMath
    def A099173(n,k): return sum( n^j*binomial(k, 2*j+1) for j in range((k//2)+1) )
    flatten([[A099173(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

A(n, k) = Sum_{i=0..floor(k/2)} n^i * C(k, 2*i+1) (array).
Recurrence: A(n, k) = 2*A(n, k-1) + (n-1)*A(n, k-2), with A(n, 0) = 0, A(n, 1) = 1.
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n, n) = A357502(n).
A(n, k) = ((1+sqrt(n))^k - (1-sqrt(n))^k)/(2*sqrt(n)). - Jean-François Alcover, Jan 21 2019

A193726 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(x+2)^n.

Original entry on oeis.org

1, 1, 2, 2, 9, 10, 4, 28, 65, 50, 8, 76, 270, 425, 250, 16, 192, 920, 2200, 2625, 1250, 32, 464, 2800, 9000, 16250, 15625, 6250, 64, 1088, 7920, 32000, 77500, 112500, 90625, 31250, 128, 2496, 21280, 103600, 315000, 612500, 743750, 515625, 156250
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (2,3,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011

Examples

			First six rows:
   1;
   1,   2;
   2,   9,  10;
   4,  28,  65,   50;
   8,  76, 270,  425,  250;
  16, 192, 920, 2200, 2625, 1250;
		

Crossrefs

Programs

  • Magma
    function T(n, k) // T = A193726
      if k lt 0 or k gt n then return 0;
      elif n lt 2 then return k+1;
      else return 2*T(n-1, k) + 5*T(n-1, k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 02 2023
    
  • Mathematica
    (* First program *)
    z = 8; a = 1; b = 2; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193726 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A193727 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 2*T[n-1, k] + 5*T[n -1, k-1]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2023 *)
  • SageMath
    def T(n, k): # T = A193726
        if (k<0 or k>n): return 0
        elif (n<2): return k+1
        else: return 2*T(n-1, k) + 5*T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 02 2023

Formula

T(n,k) = 5*T(n-1,k-1) + 2*T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-x-3*x*y)/(1-2*x-5*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 02 2023: (Start)
T(n, 0) = A011782(n).
T(n, n) = A020699(n).
T(n, n-1) = A081040(n-1).
Sum_{k=0..n} T(n, k) = A169634(n-1) + (4/7)*[n=0].
Sum_{k=0..n} (-1)^k * T(n, k) = (-1)^n*A133494(n) = -A141413(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A002532(n) + 2*A002532(n-1) + (3/5)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A045873(n) - 2*A045873(n-1) + (3/5)*[n=0]. (End)

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014

A111011 Primes in A002533.

Original entry on oeis.org

7, 19, 73, 241, 411379, 693110401, 80746825394092993, 15848109838244286131940714481, 12238279486576766124458805567902551228138920205718424019, 1732765524527243824670663837908764472971413888795440694899, 20618141429646301085064054485889973597180353561103310272561, 2919234250884982146911220973819117919577845597870261813393281
Offset: 1

Views

Author

Cino Hilliard, Oct 02 2005

Keywords

Comments

Starting with the fraction 1/1, generate the sequence of fractions A002533(i)/A002532(i) according to the rule: "add top and bottom to get the new bottom, add top and 6 times bottom to get the new top."
The prime numerators of these fractions are listed here, at locations i= 2, 3, 4, 5, 11, 17, 32, 53,... showing prime(4), prime(8), prime(21), prime(53), prime(34719),..
Is there an infinity of primes in this sequence?
a(17) = A002533(7993), which has 4298 digits so can't be included in a b-file. - Robert Israel, May 03 2024

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.

Crossrefs

Programs

  • Maple
    B[0]:= 1: B[1]:= 1: P:= NULL: count:= 0:
    for n from 2 while count < 16 do
      B[n]:= 2*B[n-1]+5*B[n-2];
      if isprime(A[n]) then count:= count+1; P:= P, B[n];  fi
    od:
    P; # Robert Israel, May 03 2024
  • Mathematica
    Select[LinearRecurrence[{2, 5}, {1, 1}, 125] ,PrimeQ[#]&] (* James C. McMahon, May 02 2024 *)
  • PARI
    primenum(n,k,typ) = \\ k=mult,typ=1 num,2 denom. output prime num or denom.
    { local(a,b,x,tmp,v); a=1;b=1;
    for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v),print1(v","); ) );
    print(); print(a/b+.) }

Formula

A002533 INTERSECT A000040.

Extensions

Simplified the definition, listed some A002533 indices. - R. J. Mathar, Sep 16 2009
a(10)-a(12) from James C. McMahon, May 02 2024

A160444 Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 6, 10, 16, 28, 44, 76, 120, 208, 328, 568, 896, 1552, 2448, 4240, 6688, 11584, 18272, 31648, 49920, 86464, 136384, 236224, 372608, 645376, 1017984, 1763200, 2781184, 4817152, 7598336, 13160704, 20759040, 35955712, 56714752
Offset: 1

Views

Author

Willibald Limbrunner (w.limbrunner(AT)gmx.de), May 14 2009

Keywords

Comments

This sequence is the case k=3 of a family of sequences with recurrences a(2*n+1) = a(2*n) + a(2*n-1), a(2*n+2) = k*a(2*n-1) + a(2*n), a(1)=0, a(2)=1. Values of k, for k >= 0, are given by A057979 (k=0), A158780 (k=1), A002965 (k=2), this sequence (k=3). See "Family of sequences for k" link for other connected sequences.
It seems that the ratio of two successive numbers with even, or two successive numbers with odd, indices approaches sqrt(k) for these sequences as n-> infinity.
This algorithm can be found in a historical figure named "Villardsche Figur" of the 13th century. There you can see a geometrical interpretation.

Crossrefs

Programs

  • Magma
    I:=[0,1,1,1]; [n le 4 select I[n] else 2*(Self(n-2) +Self(n-4)): n in [1..40]]; // G. C. Greubel, Feb 18 2023
    
  • Mathematica
    LinearRecurrence[{0,2,0,2}, {0,1,1,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A160444
        if (n<5): return ((n+1)//3)
        else: return 2*(a(n-2) + a(n-4))
    [a(n) for n in range(1, 41)] # G. C. Greubel, Feb 18 2023

Formula

a(n) = 2*a(n-2) + 2*a(n-4).
a(2*n+1) = A002605(n).
a(2*n) = A026150(n-1).

Extensions

Edited by R. J. Mathar, May 14 2009

A290999 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 6*S^2.

Original entry on oeis.org

0, 6, 12, 54, 168, 606, 2052, 7134, 24528, 84726, 292092, 1007814, 3476088, 11991246, 41362932, 142682094, 492178848, 1697768166, 5856430572, 20201701974, 69685556808, 240379623486, 829187031012, 2860272179454, 9866479513968, 34034319925206, 117401037420252
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    [n le 2 select 6*(n-1) else 2*Self(n-1) +5*Self(n-2): n in [1..41]]; // G. C. Greubel, Apr 25 2023
    
  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s^6;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290999 *)
    LinearRecurrence[{2,5},{0,6},30] (* Harvey P. Dale, Mar 25 2018 *)
  • SageMath
    A290999=BinaryRecurrenceSequence(2,5,0,6)
    [A290999(n) for n in range(41)] # G. C. Greubel, Apr 25 2023

Formula

G.f.: 6*x/(1 - 2*x - 5*x^2).
a(n) = 2*a(n-1) + 5*a(n-2) for n >= 3.
a(n) = 6*A002532(n).
a(n) = sqrt(3/2)*((1+sqrt(6))^n - (1-sqrt(6))^n). - Colin Barker, Aug 23 2017

A247584 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5) with a(0) = a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 13, 43, 113, 253, 509, 969, 1849, 3719, 8009, 18027, 40897, 91257, 198697, 423777, 894081, 1886011, 4007301, 8594411, 18560081, 40181493, 86872293, 187197193, 402060793, 861827743, 1846685729, 3960390059, 8504658049, 18283290609, 39325827729
Offset: 0

Views

Author

Alexander Samokrutov, Sep 20 2014

Keywords

Comments

a(n)/a(n-1) tends to 2.1486... = 1 + 2^(1/5), the real root of the polynomial x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x - 3.
If x^5 = 2 and n >= 0, then there are unique integers a, b, c, d, g such that (1 + x)^n = a + b*x + c*x^2 + d*x^3 + g*x^4. The coefficient a is a(n) (from A052102). - Alexander Samokrutov, Jul 11 2015
If x=a(n), y=a(n+1), z=a(n+2), s=a(n+3), t=a(n+4) then x, y, z, s, t satisfies Diophantine equation (see link). - Alexander Samokrutov, Jul 11 2015

Crossrefs

Cf. A005531.

Programs

  • Magma
    [n le 5 select 1 else 5*Self(n-1) -10*Self(n-2) +10*Self(n-3) -5*Self(n-4) +3*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jul 11 2015
    
  • Maple
    m:=50; S:=series( (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 15 2021
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,3}, {1,1,1,1,1}, 50] (* Vincenzo Librandi, Jul 11 2015 *)
  • Maxima
    makelist(sum(2^k*binomial(n,5*k), k, 0, floor(n/5)), n, 0, 50); /* Alexander Samokrutov, Jul 11 2015 */
    
  • PARI
    Vec((1-x)^4/(1-5*x+10*x^2-10*x^3+5*x^4-3*x^5) + O(x^100)) \\ Colin Barker, Sep 22 2014
    
  • Sage
    [sum(2^j*binomial(n, 5*j) for j in (0..n//5)) for n in (0..50)] # G. C. Greubel, Apr 15 2021

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5).
a(n) = Sum_{k=0...floor(n/5)} (2^k*binomial(n,5*k)). - Alexander Samokrutov, Jul 11 2015
G.f.: (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5). - Colin Barker, Sep 22 2014

A110908 Start with the fraction 1/1, list n when the numerator and denominator are both prime for fractions built according to the rule: Add old top and old bottom to get the new bottom, add old top and 6 times the old bottom to get the new top.

Original entry on oeis.org

1, 4, 52, 106
Offset: 1

Views

Author

Cino Hilliard, Oct 02 2005, Jul 05 2007

Keywords

Comments

k is the multiple 6 in the PARI code. The sequence of fractions found with the property that both numerator and denominator are prime is as follows.
n, num/denom
1, 7/2
4, 241/101
52, 15848109838244286131940714481/6469963748546758449049574741
106, 1732765524527243824670663837908764472971413888795440694899 / 7073985631629662697450635044051857198371361627935450689
From Robert Israel, Aug 12 2016: (Start)
n such that A002532(n+1) and A002533(n+1) are both prime.
Note that A002532(n+1) and A002533(n+1) are always coprime, so the fractions are in lowest terms.
No other terms <= 12000.
Heuristically we would expect A002532(n+1) to be prime with probability ~ constant/n and A002533(n+1) to be prime with probability ~ constant/n, so both prime with probability ~ constant/n^2.
Since Sum_n 1/n^2 converges, we should expect this sequence to be finite.
Since A002532(n+1) is divisible by 2 if n is odd and by 3 if n == 2 (mod 3), all terms after the first == 0 or 4 (mod 6). (End)

Examples

			The first four fractions according to the rule are
n,
1,7/2
2,19/9
3,73/28
4,241/101
n=2,3 did not make the list because 9 and 28 are not prime.
		

References

  • Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p. 16.

Crossrefs

Programs

  • Maple
    A:= gfun:-rectoproc({a(n+2)-2*a(n+1)-5*a(n), a(0)=1, a(1)=7},a(n), remember):
    B:= gfun:-rectoproc({a(n+2)-2*a(n+1)-5*a(n), a(0)=1, a(1)=2},a(n),remember):
    select(n -> isprime(A(n)) and isprime(B(n)), [1,seq(seq(6*k+j,j=[0,4]),k=0..1000)]); # Robert Israel, Aug 12 2016
  • Mathematica
    Position[Rest@ NestList[{Numerator@ #, Denominator@ #} &[(#1 + 6 #2)/(#1 + #2)] & @@ # &, {1, 1}, 2000], k_ /; Times @@ Boole@ Map[PrimeQ, k] == 1] // Flatten (* Michael De Vlieger, May 13 2017 *)
  • PARI
    primenumdenom(n,k) = { local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(tmp=1,v=a,v=b); if(ispseudoprime(a)&ispseudoprime(b),print1(x","); ) ); print(); print(a/b+.) }

Formula

Given A(0)=1,B(0)=1 then for i=1,2,.. A(i)/B(i) = (A(i-1)+6*B(i-1))/(A(i-1)+B(i-1)).
A(n) = A002532(n+1). B(n) = A002533(n+1). - Robert Israel, Aug 12 2016

A123012 Expansion of 1/(1 - 2*x - 21*x^2).

Original entry on oeis.org

1, 2, 25, 92, 709, 3350, 21589, 113528, 680425, 3744938, 21778801, 122201300, 701757421, 3969742142, 22676390125, 128717365232, 733638923089, 4170342516050, 23747102416969, 135071397670988, 768831946098325, 4374163243287398, 24893797354639621, 141645022818314600
Offset: 0

Views

Author

Roger L. Bagula, Sep 23 2006

Keywords

Crossrefs

Cf. A002532.

Programs

  • Maple
    A:= gfun:-rectoproc({a(n)=2*a(n-1)+21*a(n-2), a(0)=1,a(1)=2},a(n),remember):
    map(A, [$0..30]); # Robert Israel, Jan 28 2015
  • Mathematica
    l = 2; m = 7; k = 3; p[x_] := -k/m - l*x/m + x^2 q[x_] := ExpandAll[x^2*p[1/x]] Table[ SeriesCoefficient[Series[x/q[x], {x, 0, 30}], n]*m^(n - 1), {n, 0, 30}] f[n_Integer] = Module[{a}, a[n] /. RSolve[{a[n] == l*a[n - 1]/m + k*a[n - 2]/m, a[0] == 0, a[1] == 1}, a[n], n][[1]] // FullSimplify] a = Table[Rationalize[N[f[n]*m^(n - 1), 100], 0], {n, 0, 25}]
    Join[{a=1,b=2},Table[c=2*b+21*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
  • PARI
    Vec(1/(1-2*x-21*x^2) + O(x^30)) \\ Michel Marcus, Jan 28 2015

Formula

a(0)=1, a(1)=2, a(n) = 2*a(n-1) + 21*a(n-2) for n>1. - Philippe Deléham, Sep 19 2009
a(n) = (1/2 + sqrt(22)/44)*(1 + sqrt(22))^n + (1/2 - sqrt(22)/44)*(1 - sqrt(22))^n. - Antonio Alberto Olivares, Jun 08 2011

Extensions

Edited by N. J. A. Sloane, Sep 26 2006
Previous Showing 21-30 of 32 results. Next