cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A010769 Decimal expansion of 7th root of 2.

Original entry on oeis.org

1, 1, 0, 4, 0, 8, 9, 5, 1, 3, 6, 7, 3, 8, 1, 2, 3, 3, 7, 6, 4, 9, 5, 0, 5, 3, 8, 7, 6, 2, 3, 3, 4, 4, 7, 2, 1, 3, 2, 5, 3, 2, 6, 6, 0, 0, 7, 8, 0, 1, 2, 4, 1, 6, 5, 5, 1, 4, 5, 3, 2, 4, 6, 4, 1, 4, 2, 1, 0, 6, 3, 2, 2, 8, 8, 0, 3, 8, 0, 9, 8, 0, 7, 1, 6, 5, 9, 8, 2, 8, 9, 8, 8, 6, 3, 0, 2, 0, 0
Offset: 1

Views

Author

Keywords

Comments

This is also the unique positive attractor of the mapping M(x) = sqrt(sqrt(sqrt(2*x))). In general, (p^N-1)-th root of a number f can be approximated by iterating the mapping M(x) = (f*x)^(1/p^N). The convergence is very fast. In this case, p=2, N=3, and f=2. In the form "evaluate the 3rd (or 7th or 15th) root of a number using only square roots", the insight is usable as a recreational math puzzle. - Stanislav Sykora, Oct 26 2015

Examples

			1.104089513673812337649505387623...
		

Crossrefs

Cube roots (p=2,N=2) for various f: A002580 (2), A002581 (3), A005480 (4), A010582 (10), A092041 (e). 7th roots (p=2,N=3): A246709 (3), A011186 (4), A011201 (5), A011276 (10), A092516 (e). 8th roots (p=3,N=2): A010770 (2), A246710 (3), A011202 (5), A011277 (10). 15th roots (p=2,N=4): A010777(2), A011194(4), A011209(5), A011284(10). - Stanislav Sykora, Oct 26 2015

Programs

  • Mathematica
    RealDigits[N[2^(1/7), 100]][[1]] (* Vincenzo Librandi, Apr 02 2013 *)
    RealDigits[Surd[2,7],10,120][[1]] (* Harvey P. Dale, Sep 05 2022 *)
  • PARI
    sqrtn(2,7) \\ Charles R Greathouse IV, Apr 15 2014
    
  • PARI
    { default(realprecision, 100); x= 2^(1/7); for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 14 2015

Formula

Equals Product_{k>=0} (1 + (-1)^k/(7*k + 6)). - Amiram Eldar, Jul 29 2020

A010581 Decimal expansion of cube root of 9.

Original entry on oeis.org

2, 0, 8, 0, 0, 8, 3, 8, 2, 3, 0, 5, 1, 9, 0, 4, 1, 1, 4, 5, 3, 0, 0, 5, 6, 8, 2, 4, 3, 5, 7, 8, 8, 5, 3, 8, 6, 3, 3, 7, 8, 0, 5, 3, 4, 0, 3, 7, 3, 2, 6, 2, 1, 0, 9, 6, 9, 7, 5, 9, 1, 0, 8, 0, 2, 0, 0, 1, 0, 6, 3, 1, 1, 3, 9, 7, 2, 6, 8, 7, 7, 3, 6, 0, 6, 0, 5, 6, 6, 3, 6, 7, 9, 0, 7, 5, 7, 4, 8, 6, 7, 2, 8, 6, 7, 1, 5, 9
Offset: 1

Views

Author

Keywords

Examples

			2.08008382305190411453005682435788538633780534037326210...
		

References

  • Horace S. Uhler, Many-figure approximations for cubic root of 2, cubic root of 3, cubic root of 4 and cubic root of 9 with chi 2 data, Scripta Math. 18, (1952). 173-176.

Crossrefs

Cf. A010239 = Continued fraction. - Harry J. Smith, May 07 2009

Programs

  • Mathematica
    RealDigits[N[9^(1/3), 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 24 2012 *)
  • PARI
    { default(realprecision, 20080); x=9^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010581.txt", n, " ", d)); } \\ Harry J. Smith, May 07 2009, corrected May 19 2009

Extensions

Revised by N. J. A. Sloane, Apr 23 2006

A235362 Decimal expansion of the cube root of 2 divided by 2.

Original entry on oeis.org

6, 2, 9, 9, 6, 0, 5, 2, 4, 9, 4, 7, 4, 3, 6, 5, 8, 2, 3, 8, 3, 6, 0, 5, 3, 0, 3, 6, 3, 9, 1, 1, 4, 1, 7, 5, 2, 8, 5, 1, 2, 5, 7, 3, 2, 3, 5, 0, 7, 5, 3, 9, 9, 0, 0, 4, 0, 9, 8, 7, 5, 5, 6, 0, 7, 7, 6, 4, 9, 8, 3, 8, 2, 5, 6, 9, 7, 9, 7, 4, 1, 8, 6, 4, 6, 9, 8, 2, 8, 1, 2, 1, 8, 1, 2, 7
Offset: 0

Views

Author

Alonso del Arte, Jan 07 2014

Keywords

Comments

Also reciprocal of the real cubic root of 4 and negated real part of either complex cubic root of 2.

Examples

			0.6299605249474365823836053...
		

Crossrefs

Programs

  • Maple
    Digits := 100 ; evalf(1/2^(2/3)) ; # R. J. Mathar, Jan 16 2023
  • Mathematica
    RealDigits[1/2^(2/3), 10, 128][[1]]
  • PARI
    sqrtn(1/4,3) \\ Charles R Greathouse IV, Apr 14 2014

Formula

2^(1/3)/2 = 1/2^(2/3) = 1/4^(1/3).
(-2^(1/3)/2 + sqrt(-3)/4^(1/3))^3 = 2.
Equals 1/A005480 = A002580 /2 . - Wolfdieter Lang, Jan 02 2023

A270714 Decimal expansion of (1/2)^(1/3).

Original entry on oeis.org

7, 9, 3, 7, 0, 0, 5, 2, 5, 9, 8, 4, 0, 9, 9, 7, 3, 7, 3, 7, 5, 8, 5, 2, 8, 1, 9, 6, 3, 6, 1, 5, 4, 1, 3, 0, 1, 9, 5, 7, 4, 6, 6, 6, 3, 9, 4, 9, 9, 2, 6, 5, 0, 4, 9, 0, 4, 1, 4, 2, 8, 8, 0, 9, 1, 2, 6, 0, 8, 2, 5, 2, 8, 1, 2, 1, 0, 9, 5, 8, 6, 6, 3, 6, 7, 7
Offset: 0

Views

Author

Clark Kimberling, Mar 22 2016

Keywords

Comments

Let c = (1/2)^(1/3). A sphere of radius c*r has half the volume of a sphere of radius r. - Rick L. Shepherd, Aug 12 2016
Let c = (1/2)^(1/3). The relative maximum of xy(x+y)=1 is (c,-1/c^2). - Clark Kimberling, Oct 05 2020

Examples

			0.79370052598409973737585281963615413019574666394992650490414288091260825...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/2)^(1/3), 10, 200][[1]]
  • PARI
    (1/2)^(1/3) \\ Altug Alkan, Mar 22 2016

Formula

Equals 1/A002580 = A002580*A235362 = A005480*A020761. [corrected and expanded by Rick L. Shepherd, Aug 12 2016]
Equals Product_{k>=1} (1 + (-1)^k/(3*k+1)). - Amiram Eldar, Aug 10 2020

A290570 Decimal expansion of Integral_{0..Pi/2} dtheta/(cos(theta)^3 + sin(theta)^3)^(2/3).

Original entry on oeis.org

1, 7, 6, 6, 6, 3, 8, 7, 5, 0, 2, 8, 5, 4, 4, 9, 9, 5, 7, 3, 1, 3, 6, 8, 9, 4, 9, 9, 6, 4, 8, 4, 3, 8, 7, 0, 2, 5, 7, 1, 8, 6, 8, 5, 3, 8, 2, 0, 2, 5, 5, 7, 5, 3, 0, 1, 2, 6, 9, 0, 5, 2, 4, 1, 8, 3, 5, 4, 5, 3, 0, 0, 1, 7, 2, 8, 1, 0, 7, 9, 1, 3, 6, 0, 5, 4, 8, 6, 9, 9, 3, 3, 3, 3, 3, 8, 3, 5, 8, 7, 2, 1, 9, 3, 4
Offset: 1

Views

Author

Jean-François Alcover, Aug 07 2017

Keywords

Examples

			1.766638750285449957313689499648438702571868538202557530126905241835453...
		

References

  • Oscar S. Adams, Elliptic Functions Applied to Conformal World Maps, Special Publication No. 112 of the U.S. Coast and Geodetic Survey, 1925. See constant K p. 9 and previous pages.

Crossrefs

Cf. A073005 (Gamma(1/3)), A073006 (Gamma(2/3)), A197374 (Beta(1/3,1/3)).

Programs

  • Mathematica
    RealDigits[(1/3)*Gamma[1/3]^2/Gamma[2/3], 10, 105]
  • PARI
    (1/3)*gamma(1/3)^2/gamma(2/3) \\ Michel Marcus, Aug 07 2017

Formula

Equals (1/3)*Beta(1/3,1/3).
Equals (1/3)*Gamma(1/3)^2/Gamma(2/3).
Equals A197374/3. - Michel Marcus, Jun 08 2020
From Peter Bala, Mar 01 2022: (Start)
Equals 2*Sum_{n >= 0} (1/(3*n+1) + 1/(3*n-2))*binomial(1/3,n). Cf. A002580 and A175576.
Equals Sum_{n >= 0} (-1)^n*(1/(3*n+1) - 1/(3*n-2))*binomial(1/3,n).
Equals hypergeom([1/3, 2/3], [4/3], 1) = (3/2)*hypergeom([-1/3, -2/3], [4/3], 1) = 2*hypergeom([1/3, 2/3], [4/3], -1) = hypergeom([-1/3, -2/3, 5/6], [4/3, -1/6], -1). (End)

A098328 Recurrence sequence derived from the digits of the cube root of 2 after its decimal point.

Original entry on oeis.org

0, 7, 14, 42, 147, 321, 473, 322, 785, 1779, 3039, 1957, 16446, 274134, 374781, 110639, 248175, 385504, 2359264, 5108010, 3822244, 3812946, 9896631
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 14 2004

Keywords

Examples

			2^(1/3)=1.259921049894873164767210607...
So for example, with a(1)=0, a(2)=7 because the 7th digit after the decimal point is 0; a(3)=14 because the 14th digit after the decimal point is 7 and so on.
		

Crossrefs

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2), A098327 for sqrt(e). A002580 for digits of 2^(1/3).

Programs

  • Maple
    with(StringTools): Digits:=10000: G:=convert(evalf(root(2,3)),string): a[0]:=0: for n from 1 to 12 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od: # Nathaniel Johnston, Apr 30 2011

Formula

a(1)=0. a(1)=0, p(i)=position of first occurrence of a(i) in decimal places of 2^(1/3), a(i+1)=p(i).

Extensions

More terms from Ryan Propper, Jul 21 2006

A248041 Numerators of approximation to 2^(1/3) by Newton's method after n iterations.

Original entry on oeis.org

1, 4, 91, 1126819, 2146097524939083451
Offset: 0

Views

Author

Kival Ngaokrajang, Jan 11 2015

Keywords

Comments

Denominators are given in A248042.

Examples

			Approximations to 2^(1/3):
n = 1:            4/3 = 1.33333...; error = 0.07341...
n = 2:          91/72 = 1.26388...; error = 0.00396...
n = 3: 1126819/894348 = 1.25993...; error = 0.00001...
...
		

Crossrefs

Formula

a(n) = x(n)/gcd(x(n),y(n))
where x(n) = 2*(a(n-1)^3*A248042(n-1)^2 + A248042(n-1)^5)
and y(n) = 3*a(n-1)^2*A248042(n-1)^3;
x(0) = y(0) = 1.

A248042 Denominators of approximation to 2^(1/3) by Newton's method after n iterations.

Original entry on oeis.org

1, 3, 72, 894348, 1703358734191174242
Offset: 0

Views

Author

Kival Ngaokrajang, Jan 11 2015

Keywords

Comments

Numerators are given in A248041.

Examples

			Approximations to 2^(1/3):
n = 1:            4/3 = 1.33333...; error = 0.07341...
n = 2:          91/72 = 1.26388...; error = 0.00396...
n = 3: 1126819/894348 = 1.25993...; error = 0.00001...
...
		

Crossrefs

Formula

a(n) = y(n)/gcd(x(n),y(n))
where x(n) = 2*(A248041(n-1)^3*a(n-1)^2 + a(n-1)^5)
and y(n) = 3*A248041(n-1)^2*a(n-1)^3;
x(0) = y(0) = 1.

A329219 Decimal expansion of 2^(10/12) = 2^(5/6).

Original entry on oeis.org

1, 7, 8, 1, 7, 9, 7, 4, 3, 6, 2, 8, 0, 6, 7, 8, 6, 0, 9, 4, 8, 0, 4, 5, 2, 4, 1, 1, 1, 8, 1, 0, 2, 5, 0, 1, 5, 9, 7, 4, 4, 2, 5, 2, 3, 1, 7, 5, 6, 3, 2, 0, 8, 0, 6, 7, 6, 7, 5, 1, 3, 9, 8, 4, 5, 0, 3, 8, 6, 1, 6, 0, 6, 6, 3, 1, 5, 2, 4, 9, 8, 5, 2, 7, 5, 0, 5, 1, 5, 3, 4
Offset: 1

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

2^(10/12) is the ratio of the frequencies of the pitches in a minor seventh (e.g., D4-C5) in 12-tone equal temperament.

Examples

			1.78179743...
		

Crossrefs

Frequency ratios of musical intervals:
Perfect unison: 2^(0/12) = 1.0000000000
Minor second: 2^(1/12) = 1.0594630943... (A010774)
Major second: 2^(2/12) = 1.1224620483... (A010768)
Minor third: 2^(3/12) = 1.1892071150... (A010767)
Major third: 2^(4/12) = 1.2599210498... (A002580)
Perfect fourth: 2^(5/12) = 1.3348398541... (A329216)
Aug. fourth/
Dim. fifth: 2^(6/12) = 1.4142135623... (A002193)
Perfect fifth: 2^(7/12) = 1.4983070768... (A328229)
Minor sixth: 2^(8/12) = 1.5874010519... (A005480)
Major sixth: 2^(9/12) = 1.6817928305... (A011006)
Minor seventh: 2^(10/12) = 1.7817974362... (this sequence)
Major seventh: 2^(11/12) = 1.8877486253... (A329220)
Perfect octave: 2^(12/12) = 2.0000000000

Programs

  • Mathematica
    First[RealDigits[2^(5/6), 10, 100]] (* Paolo Xausa, Apr 27 2024 *)
  • PARI
    default(realprecision, 100); 2^(10/12)

Formula

Equals 2/A010768.
Equals Product_{k>=0} (1 + (-1)^k/(6*k + 1)). - Amiram Eldar, Jul 25 2020

A010588 Decimal expansion of cube root of 16.

Original entry on oeis.org

2, 5, 1, 9, 8, 4, 2, 0, 9, 9, 7, 8, 9, 7, 4, 6, 3, 2, 9, 5, 3, 4, 4, 2, 1, 2, 1, 4, 5, 5, 6, 4, 5, 6, 7, 0, 1, 1, 4, 0, 5, 0, 2, 9, 2, 9, 4, 0, 3, 0, 1, 5, 9, 6, 0, 1, 6, 3, 9, 5, 0, 2, 2, 4, 3, 1, 0, 5, 9, 9, 3, 5, 3, 0, 2, 7, 9, 1, 8, 9, 6, 7, 4, 5, 8, 7, 9, 3, 1, 2, 4, 8, 7, 2, 5, 1, 0, 1, 8
Offset: 1

Views

Author

Keywords

Examples

			2.51984209978974632953442121455645670114050292940301...
		

Crossrefs

Cf. A002580.

Programs

Formula

Equals 2 * A002580. - Amiram Eldar, Jun 25 2023
Previous Showing 11-20 of 35 results. Next