cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A324172 Number of subsets of {1,...,n} that cross their complement.

Original entry on oeis.org

0, 0, 0, 0, 2, 10, 32, 84, 198, 438, 932, 1936, 3962, 8034, 16200, 32556, 65294, 130798, 261836, 523944, 1048194, 2096730, 4193840, 8388100, 16776662, 33553830, 67108212, 134217024, 268434698, 536870098, 1073740952, 2147482716, 4294966302, 8589933534, 17179868060
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

Two sets cross each other if they are of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
Also the number of verex cuts in the wheel graph on n nodes. - Eric W. Weisstein, Apr 22 2023

Examples

			The a(5) = 10 subsets are {1,3}, {1,4}, {2,4}, {2,5}, {3,5}, {1,2,4}, {1,3,4}, {1,3,5}, {2,3,5}, {2,4,5}.
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    concat([0,0,0,0], Vec(2*x^4 / ((1 - x)^3*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Feb 19 2019

Formula

a(0) = 0; a(n) = 2^n - n^2 + n - 2.
a(n) = 2*A002662(n-1) for n > 0.
G.f.: 2*x^4/((1-2*x)*(1-x)^3).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>4. - Colin Barker, Feb 18 2019

A324166 Number of totally crossing set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 18, 57, 207, 842, 3673, 17062, 84897
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A set partition is totally crossing if every pair of distinct blocks is of the form {{...x...y...}, {...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			The a(6) = 18 totally crossing set partitions:
  {{1,2,3,4,5,6}}
  {{1,4,6},{2,3,5}}
  {{1,4,5},{2,3,6}}
  {{1,3,6},{2,4,5}}
  {{1,3,5},{2,4,6}}
  {{1,3,4},{2,5,6}}
  {{1,2,5},{3,4,6}}
  {{1,2,4},{3,5,6}}
  {{4,6},{1,2,3,5}}
  {{3,6},{1,2,4,5}}
  {{3,5},{1,2,4,6}}
  {{2,6},{1,3,4,5}}
  {{2,5},{1,3,4,6}}
  {{2,4},{1,3,5,6}}
  {{1,5},{2,3,4,6}}
  {{1,4},{2,3,5,6}}
  {{1,3},{2,4,5,6}}
  {{1,4},{2,5},{3,6}}
		

Crossrefs

Cf. A000108 (non-crossing partitions), A000110, A000296, A002662, A016098 (crossing partitions), A054726, A099947 (topologically connected partitions), A305854, A306006, A306418, A306438, A319752.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A058720 Triangle T(n,k) giving the number of simple matroids of rank k on n labeled points (n >= 2, 2 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 31, 16, 1, 1, 352, 337, 42, 1, 1, 8389, 18700, 2570, 99, 1, 1, 433038, 7642631, 907647, 16865, 219, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Examples

			Triangle T(n,k) (with rows n >= 2 and columns k >= 2) begins as follows:
  1;
  1,      1;
  1,      5,       1;
  1,     31,      16,      1;
  1,    352,     337,     42,     1;
  1,   8389,   18700,   2570,    99,   1;
  1, 433038, 7642631, 907647, 16865, 219, 1;
  ...
		

Crossrefs

Row sums give A058721.
Columns include (truncated versions of) A000012 (k=2), (A056642)+1 (k=3), A058722 (k=4).

Formula

From Petros Hadjicostas, Oct 09 2019: (Start)
T(n, n-1) = 2^n - 1 - binomial(n+1,2) = A002662(n) for n >= 2. [Dukes (2004), Lemma 2.2(i).]
T(n, n-2) = A100728(n) = A000110(n+1) + binomial(n+3,4) + 2*binomial(n+1,4) - 2^n - 2^(n-1)*binomial(n+1,2). [Dukes (2004), Lemma 2.2(iii).]
(End)

A074060 Graded dimension of the cohomology ring of the moduli space of n-pointed stable curves of genus 0 satisfying the associativity equations of physics (also known as the WDVV equations).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 16, 16, 1, 1, 42, 127, 42, 1, 1, 99, 715, 715, 99, 1, 1, 219, 3292, 7723, 3292, 219, 1, 1, 466, 13333, 63173, 63173, 13333, 466, 1, 1, 968, 49556, 429594, 861235, 429594, 49556, 968, 1, 1, 1981, 173570, 2567940, 9300303, 9300303, 2567940, 173570, 1981, 1
Offset: 3

Views

Author

Margaret A. Readdy, Aug 16 2002

Keywords

Comments

Combinatorial interpretations of Lagrange inversion (A134685) and the 2-Stirling numbers of the first kind (A049444 and A143491) provide a combinatorial construction for A074060 (see first Copeland link). For relations of A074060 to other arrays see second Copeland link page 19. - Tom Copeland, Sep 28 2008
These Poincare polynomials for the compactified moduli space of rational curves are presented on p. 5 of Lando and Zvonkin as well as those for the non-compactified Poincare polynomials of A049444 in factorial form. - Tom Copeland, Jun 13 2021

Examples

			Viewed as a triangular array, the values are
  1;
  1,   1;
  1,   5,   1;
  1,  16,  16,   1;
  1,  42, 127,  42,   1; ...
		

Crossrefs

Cf. A074059. 2nd diagonal is A002662.

Programs

  • Maple
    DA:=((1+t)*A(u,t)+u)/(1-t*A(u,t)): F:=0: for k from 1 to 10 do F:=map(simplify,int(series(subs(A(u,t)=F,DA),u,k),u)); od: # Eric Rains, Apr 02 2005
  • Mathematica
    DA = ((1+t) A[u, t] + u)/(1 - t A[u, t]); F = 0;
    Do[F = Integrate[Series[DA /. A[u, t] -> F, {u, 0, k}], u], {k, 1, 10}];
    (cc = CoefficientList[#, t]; cc Denominator[cc[[1]]])& /@ Drop[ CoefficientList[F, u], 2] // Flatten (* Jean-François Alcover, Oct 15 2019, after Eric Rains *)

Formula

Define offset to be 0 and P(n,t) = (-1)^n Sum_{j=0..n-2} a(n-2,j)*t^j with P(1,t) = -1 and P(0,t) = 1, then H(x,t) = -1 + exp(P(.,t)*x) is the compositional inverse in x about 0 of G(x,t) in A049444. H(x,0) = exp(-x) - 1, H(x,1) = -1 + exp( 2 + W( -exp(-2) * (2-x) ) ) and H(x,2) = 1 - (1+2*x)^(1/2), where W is a branch of the Lambert function such that W(-2*exp(-2)) = -2. - Tom Copeland, Feb 17 2008
Let offset=0 and g(x,t) = (1-t)/((1+x)^(t-1)-t), then the n-th row polynomial of the table is given by [(g(x,t)*D_x)^(n+1)]x with the derivative evaluated at x=0. - Tom Copeland, Jun 01 2008
With the notation in Copeland's comments, dH(x,t)/dx = -g(H(x,t),t). - Tom Copeland, Sep 01 2011
The term linear in x of [x*g(d/dx,t)]^n 1 gives the n-th row polynomial with offset 1. (See A134685.) - Tom Copeland, Oct 21 2011

Extensions

More terms from Eric Rains, Apr 02 2005

A213571 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 5, 3, 16, 13, 7, 42, 38, 29, 15, 99, 94, 82, 61, 31, 219, 213, 198, 170, 125, 63, 466, 459, 441, 406, 346, 253, 127, 968, 960, 939, 897, 822, 698, 509, 255, 1981, 1972, 1948, 1899, 1809, 1654, 1402, 1021, 511, 4017, 4007, 3980, 3924, 3819, 3633
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Comments

Principal diagonal: A213572.
Antidiagonal sums: A213581.
Row 1, (1,2,3,4,5,...)**(1,3,7,15,31,...): A002662.
Row 2, (1,2,3,4,5,...)**(3,7,15,31,63,...).
Row 3, (1,2,3,4,5,...)**(7,15,31,63,...).
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
   1,    5,   16,   42,   99,  219, ...
   3,   13,   38,   94,  213,  459, ...
   7,   29,   82,  198,  441,  939, ...
  15,   61,  170,  406,  897, 1899, ...
  31,  125,  346,  822, 1809, 3819, ...
  ...
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> 2^(n+2) -2^k*(n-k+3) -Binomial(n-k+2, 2) ))); # G. C. Greubel, Jul 25 2019
  • Magma
    [2^(n+2) -2^k*(n-k+3) -Binomial(n-k+2, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 25 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= n; c[n_]:= -1 + 2^n;
    t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_]:= Table[t[n, k], {k, 1, 60}]  (* A213571 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213572 *)
    s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213581 *)
    (* Additional programs *)
    Table[2^(n+2) -2^k*(n-k+3) -Binomial[n-k+2, 2], {n,12}, {k, n}]//Flatten (* G. C. Greubel, Jul 25 2019 *)
  • PARI
    for(n=1,12, for(k=1,n, print1(2^(n+2) -2^k*(n-k+3) -binomial(n-k+2, 2), ", "))) \\ G. C. Greubel, Jul 25 2019
    
  • Sage
    [[2^(n+2) -2^k*(n-k+3) -binomial(n-k+2, 2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 25 2019
    

Formula

T(n,k) = 5*T(n,k-1) - 9*T(n,k-2) + 7*T(n,k-3) - 2*T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(-1 + 2^n - (-2 + 2^n)*x) and g(x) = (1 - 2*x)(1 - x)^3.
T(n,k) = 2^(n+k+1) - 2^n*(k+2) - binomial(k+1, 2). - G. C. Greubel, Jul 25 2019

A268814 Number of purely crossing partitions of [n].

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 5, 14, 62, 298, 1494, 8140, 47146, 289250, 1873304, 12756416, 91062073, 679616480, 5290206513, 42858740990, 360686972473, 3147670023632, 28439719809159, 265647698228954, 2561823514680235, 25475177517626196, 260922963832247729, 2749617210928715246
Offset: 0

Views

Author

Michel Marcus, Feb 14 2016

Keywords

Comments

For the definition of a purely crossing partition refer to Dykema link (see PC(n) Definition 1.2 and Table 2).
From Gus Wiseman, Feb 23 2019: (Start)
For n >= 1, a set partition of {1,...,n} is purely crossing if it is topologically connected (A099947), has no successive elements in the same block (A000110(n - 1)), and the first and last vertices belong to different blocks (A005493(n - 2)). For example, the a(4) = 1, a(6) = 5, and a(7) = 14 purely crossing set partitions are:
{{13}{24}} {{135}{246}} {{13}{246}{57}}
{{13}{25}{46}} {{13}{257}{46}}
{{14}{25}{36}} {{135}{26}{47}}
{{14}{26}{35}} {{135}{27}{46}}
{{15}{24}{36}} {{136}{24}{57}}
{{136}{25}{47}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
(End)

Examples

			G.f.: A(x) = 1 + x^4 + 5*x^6 + 14*x^7 + 62*x^8 + 298*x^9 + 1494*x^10 + 8140*x^11 + 47146*x^12 +...
		

Crossrefs

Programs

  • Mathematica
    n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w]/w)-1, x/(1+x) + O[x]^n]; A = (B-x)/(1+x); Join[{1}, CoefficientList[A, x] // Rest] (* Jean-François Alcover, Feb 23 2016, adapted from K. J. Dykema's code *)
    intvQ[set_]:=Or[set=={},Sort[set]==Range[Min@@set,Max@@set]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],And[!MatchQ[#,{_,{_,x_,y_,_},_}/;x+1==y],#=={}||And@@Not/@intvQ/@Union@@@Subsets[#,{1,Length[#]-1}],#=={}||Position[#,1][[1,1]]!=Position[#,n][[1,1]]]&]],{n,0,10}] (* Gus Wiseman, Feb 23 2019 *)
  • PARI
    lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x)+ O(x^nn)); vb = Vec(b-1); va = vector(#vb); va[1] = 0; va[2] = 0; for (k=3, #va, va[k] = vb[k] - va[k-1]; ); concat(1, va); }
    
  • PARI
    {a(n) = my(A=1+x^3); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)^2*A - k*x +x*O(x^n)) )/(1+x) ); polcoeff( A, n)}
    for(n=0,35,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
    
  • PARI
    {Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
    {Bell(n) = sum(k=0,n, Stirling2(n, k) )}
    {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x +x*O(x^n))^(2*m+1)*A^m)) ); polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016

Formula

G.f.: G(x) satisfies B(x) = x + (1 + x)*G(x) where B(x) is the g.f. of A268815 (see A(x) in Dykema link p. 7).
From Paul D. Hanna, Mar 07 2016: (Start)
O.g.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} A000110(n)*x^n / ((1+x)^(2*n+1) * A(x)^n), where A000110 are the Bell numbers.
(2) A(x) = 1/(1+x) * Sum_{n>=0} x^n / Product_{k=1..n} ((1+x)^2*A(x) - k*x).
(3) A(x) = 1/(1+x - x/((1+x)*A(x) - 1*x/(1+x - x/((1+x)*A(x) - 2*x/(1+x - x/((1+x)*A(x) - 3*x/(1+x - x/((1+x)*A(x) - 4*x/(1+x - x/((1+x)*A(x) -...)))))))))), a continued fraction. (End)

A324323 Regular triangle read by rows where T(n,k) is the number of topologically connected set partitions of {1,...,n} with k blocks, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 16, 4, 0, 0, 0, 0, 1, 42, 42, 0, 0, 0, 0, 0, 1, 99, 258, 27, 0, 0, 0, 0, 0, 1, 219, 1222, 465, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A set partition of {1,...,n} is topologically connected if the graph whose vertices are the blocks and whose edges are crossing pairs of blocks is connected, where two blocks cross each other if they are of the form {{...x...y...},{...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			Triangle begins:
    1
    0    1
    0    1    0
    0    1    0    0
    0    1    1    0    0
    0    1    5    0    0    0
    0    1   16    4    0    0    0
    0    1   42   42    0    0    0    0
    0    1   99  258   27    0    0    0    0
    0    1  219 1222  465    0    0    0    0    0
Row n = 6 counts the following set partitions:
  {{123456}}  {{1235}{46}}  {{13}{25}{46}}
              {{124}{356}}  {{14}{25}{36}}
              {{1245}{36}}  {{14}{26}{35}}
              {{1246}{35}}  {{15}{24}{36}}
              {{125}{346}}
              {{13}{2456}}
              {{134}{256}}
              {{1345}{26}}
              {{1346}{25}}
              {{135}{246}}
              {{1356}{24}}
              {{136}{245}}
              {{14}{2356}}
              {{145}{236}}
              {{146}{235}}
              {{15}{2346}}
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]<=1&&Length[#]==k&]],{n,0,6},{k,0,n}]

A058393 A square array based on 1^n (A000012) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 3, 1, 0, 1, 2, 4, 4, 1, 1, 1, 2, 4, 7, 5, 1, 0, 1, 2, 4, 8, 11, 6, 1, 1, 1, 2, 4, 8, 15, 16, 7, 1, 0, 1, 2, 4, 8, 16, 26, 22, 8, 1, 1, 1, 2, 4, 8, 16, 31, 42, 29, 9, 1, 0, 1, 2, 4, 8, 16, 32, 57, 64, 37, 10, 1, 1, 1, 2, 4, 8, 16, 32, 63, 99, 93, 46, 11, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Nov 24 2000

Keywords

Comments

Changing the formula by replacing T(0,2n)=T(1,n) by T(0,2n)=T(m,n) for some other value of m, would make the generating function change to coefficient of x^n in expansion of (1+x)^k/(1-x^2)^m. This would produce A058394, A058395, A057884, (and effectively A007318).

Examples

			Rows are (1,0,1,0,1,0,1,...), (1,1,1,1,1,1,...), (1,2,2,2,2,2,...), (1,3,4,4,4,...) etc.
		

Crossrefs

Rows are A000035 (A000012 with zeros), A000012, A040000 etc. Columns are A000012, A001477, A000124, A000125, A000127, A006261, A008859, A008860, A008861, A008862, A008863 etc. Diagonals include A000079, A000225, A000295, A002662, A002663, A002664, A035038, A035039, A035040, A035041, etc. The triangles A008949, A054143 and A055248 also appear in the half of the array which is not powers of 2.

Formula

T(n, k)=T(n-1, k-1)+T(n, k-1) with T(0, k)=1, T(1, 1)=1, T(0, 2n)=T(1, n) and T(0, 2n+1)=0. Coefficient of x^n in expansion of (1+x)^k/(1-x^2).

A213582 Rectangular array: (row n) = b**c, where b(h) = -1 + 2^h, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 5, 2, 16, 9, 3, 42, 27, 13, 4, 99, 68, 38, 17, 5, 219, 156, 94, 49, 21, 6, 466, 339, 213, 120, 60, 25, 7, 968, 713, 459, 270, 146, 71, 29, 8, 1981, 1470, 960, 579, 327, 172, 82, 33, 9, 4017, 2994, 1972, 1207, 699, 384, 198, 93, 37, 10, 8100, 6053, 4007, 2474, 1454, 819, 441, 224, 104, 41, 11
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Comments

Principal diagonal: A213583.
Antidiagonal sums: A156928.
Row 1, (1,3,7,15,31,...)**(1,2,3,4,5,...): A002662.
Row 2, (1,3,7,15,31,...)**(2,3,4,5,6,...)
Row 3, (1,3,7,15,31,...)**(3,4,5,6,7,...)
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...5....16...42....99....219
2...9....27...68....156...339
3...13...38...94....213...459
4...17...49...120...270...579
5...21...60...146...327...699
6...25...71...172...384...819
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> 2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2 ))); # G. C. Greubel, Jul 08 2019
  • Magma
    [[2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= 2^n - 1; c[n_]:= n;
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213582 *)
    r[n_]:= Table[T[n, k], {k, 40}]
    Table[T[n, n], {n, 1, 40}] (* A213583 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A156928 *)
    (* Second program *)
    Table[2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    t(n,k) = 2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2;
    for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    [[2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019
    

Formula

T(n,k) = 5*T(n,k-1) - 9*T(n,k-2) + 7*T(n,k-3) - 2*T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = n - (n-1)*x and g(x) = (1-2*x) *(1-x)^3.
T(n,k) = 2*(n+1)*(2^k - 1) - k*(k + 2*n + 3)/2. - G. C. Greubel, Jul 08 2019

A307393 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 5, 1, 4, 16, 1, 4, 11, 42, 1, 4, 10, 26, 99, 1, 4, 10, 21, 57, 219, 1, 4, 10, 20, 42, 120, 466, 1, 4, 10, 20, 36, 84, 247, 968, 1, 4, 10, 20, 35, 64, 169, 502, 1981, 1, 4, 10, 20, 35, 57, 120, 340, 1013, 4017, 1, 4, 10, 20, 35, 56, 93, 240, 682, 2036, 8100
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2019

Keywords

Examples

			Square array begins:
     1,   1,   1,   1,   1,   1,   1,   1, ...
     5,   4,   4,   4,   4,   4,   4,   4, ...
    16,  11,  10,  10,  10,  10,  10,  10, ...
    42,  26,  21,  20,  20,  20,  20,  20, ...
    99,  57,  42,  36,  35,  35,  35,  35, ...
   219, 120,  84,  64,  57,  56,  56,  56, ...
   466, 247, 169, 120,  93,  85,  84,  84, ...
   968, 502, 340, 240, 165, 130, 121, 120, ...
		

Crossrefs

Columns 1-5 give A002662(n+3), A125128(n+1), A111927(n+3), A000749(n+3), A139748(n+3).

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+3,k*j+3).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i+1,k*j+1) * binomial(n-i+1,k*j+1).
Previous Showing 11-20 of 38 results. Next