cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A232224 Number of ways of arranging n chords on a circle (handshakes between 2n people across a table) with exactly 3 simple intersections.

Original entry on oeis.org

0, 0, 0, 1, 20, 195, 1430, 9009, 51688, 278460, 1434120, 7141530, 34648856, 164663785, 769491450, 3546222225, 16152872400, 72846725160, 325722299760, 1445598337950, 6373942543800, 27942072562950, 121863923024844, 529043313674106, 2287209524819120
Offset: 0

Views

Author

N. J. A. Sloane, Nov 22 2013

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - Sqrt[1 - 4 x^2])^6 ((1 - x^2) Sqrt[1 - 4 x^2] + 7 x^2 - 26 x^4)/(64 x^6 Sqrt[1 - 4 x^2]^5), {x, 0, 48}], x^2] (* Michael De Vlieger, Sep 30 2015 *)
  • PARI
    lista(nn) = {np = 2*nn+2; default(seriesprecision, np); pol = (1-sqrt(1-4*x^2))^6*((1-x^2)*sqrt(1-4*x^2)+7*x^2-26*x^4)/(64*x^6*sqrt(1-4*x^2)^5) + O(x^(np)); forstep (n=0, 2*nn, 2, print1(polcoeff(pol, n), ", "););} \\ Michel Marcus, Sep 30 2015
    
  • PARI
    x='x+O('x^33); concat([0,0,0],Vec((1-sqrt(1-4*x))^6*((1-x)*sqrt(1-4*x)+7*x-26*x^2) / (64*x^3*sqrt(1-4*x)^5))) \\ Joerg Arndt, Sep 30 2015

Formula

Pilaud-Rue give an explicit g.f.
a(n) = [x^(2n)] (1-sqrt(1-4*x^2))^6*((1-x^2)*sqrt(1-4*x^2)+7*x^2-26*x^4) / (64*x^6*sqrt(1-4*x^2)^5). - Michel Marcus, Sep 30 2015

Extensions

Corrected initial terms and more terms from Lars Blomberg, Sep 30 2015

A281580 a(n) = binomial(9*n, n-9).

Original entry on oeis.org

1, 90, 4851, 204156, 7413705, 244222650, 7511839335, 219683466288, 6183023199255, 168899639028120, 4505395859893071, 117891537949758600, 3036500678480436531, 77190387796530738576, 1940723247304668029175, 48339506285032758609456, 1194448077521704400002650
Offset: 9

Views

Author

Vincenzo Librandi, Feb 02 2017

Keywords

Comments

Row 9*n, column n-9 of A007318. - Felix Fröhlich, Feb 05 2017

Crossrefs

Cf. sequences with formula binomial(k*n, n-k): A002694 (k=2), A004321 (k=3), A004334 (k=4), A004347 (k=5), A004361 (k=6), A004375 (k=7), A004389 (k=8), this sequence (k=9).

Programs

  • Magma
    [Binomial(9*n, n-9): n in [9..30]];
    
  • Mathematica
    Table[Binomial[9 n, n - 9], {n, 9, 25}]
  • PARI
    a(n) = binomial(9*n, n-9) \\ Felix Fröhlich, Feb 05 2017

A023818 Sum of exponents in prime-power factorization of C(2n,n-2).

Original entry on oeis.org

0, 2, 3, 5, 4, 4, 6, 8, 6, 7, 8, 9, 8, 10, 11, 12, 11, 11, 12, 14, 11, 12, 14, 15, 13, 15, 16, 16, 13, 13, 17, 19, 14, 16, 18, 17, 15, 18, 19, 22, 20, 20, 21, 24, 21, 20, 23, 24, 23, 24, 22, 23, 22, 23, 24, 25, 22, 24, 27, 27, 22, 26, 29, 30, 26, 26, 28, 30, 27, 28, 31, 31, 29, 31, 31, 33, 31, 28, 31
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[Total[FactorInteger[Binomial[2 n, n - 2]][[All, 2]]], {n, 3, 80}]] (* Ivan Neretin, Nov 02 2017 *)
    a[n_] := PrimeOmega[Binomial[2*n, n-2]]; Array[a, 100, 2] (* Amiram Eldar, Jun 12 2025 *)
  • PARI
    a(n) = bigomega(binomial(2*n, n-2)); \\ Amiram Eldar, Jun 12 2025

Formula

From Amiram Eldar, Jun 12 2025: (Start)
a(n) = A001222(A002694(n)).
a(n) = A023817(n) - A022559(n+2) + A022559(n-1). (End)

Extensions

Offset corrected to 2 by Ivan Neretin, Nov 02 2017

A026389 a(n) = number of integer strings s(0),...,s(n) counted by array T in A026386 that have s(n)=4; also a(n) = T(2n,n-2).

Original entry on oeis.org

1, 8, 49, 272, 1440, 7428, 37730, 189808, 948909, 4724160, 23453001, 116207424, 575036475, 2842936320, 14046869575, 69378730880, 342590699955, 1691519468760, 8351553940355, 41235710124400, 203617691311370, 1005560117623204
Offset: 2

Views

Author

Keywords

Comments

Binomial transform of A002694. - Ross La Haye, Mar 05 2005

Formula

Conjecture: (n+2)*a(n) +4*(-3*n-2)*a(n-1) +2*(24*n-19)*a(n-2) +4*(-18*n+43)*a(n-3) +35*(n-4)*a(n-4)=0. - R. J. Mathar, May 29 2013

A092583 Triangle read by rows: T(n,k) is the number of permutations p of [n] in which the length of the longest initial segment avoiding the 123-pattern is equal to k.

Original entry on oeis.org

1, 0, 2, 0, 1, 5, 0, 4, 6, 14, 0, 20, 30, 28, 42, 0, 120, 180, 168, 120, 132, 0, 840, 1260, 1176, 840, 495, 429, 0, 6720, 10080, 9408, 6720, 3960, 2002, 1430, 0, 60480, 90720, 84672, 60480, 35640, 18018, 8008, 4862, 0, 604800, 907200, 846720, 604800, 356400, 180180, 80080, 31824, 16796
Offset: 1

Views

Author

Emeric Deutsch and Warren P. Johnson (wjohnson(AT)bates.edu), Apr 10 2004

Keywords

Comments

Row sums are the factorial numbers (A000142).
Diagonal is A000108.
T(n,n-1) = binomial(2n-2,n-3) = A002694(n-1).

Examples

			T(4,3) = 6 because 1324, 1423, 2134, 2314, 3124 and 4123 are the only permutations of [4] in which the length of the longest initial segment avoiding the 123-pattern is equal to 3 (i.e., the first three entries do not contain the 123-pattern but all 4 of them do).
Triangle starts:
  1;
  0,    2;
  0,    1,    5;
  0,    4,    6,   14;
  0,   20,   30,   28,   42;
  0,  120,  180,  168,  120,  132;
  0,  840, 1260, 1176,  840,  495,  429;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return Binomial(2*n, n)/(n + 1);
        else return Factorial(n)*Binomial(2*k, k-2)/Factorial(k+1);
        fi;
      end;
    Flat(List([1..12], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Jul 22 2019
  • Magma
    T:= func< n,k | k eq n select Catalan(n) else Factorial(n)*Binomial(2*k, k-2)/Factorial(k+1) >;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    T[n_,k_]:= If[k==n, CatalanNumber[n], n!*Binomial[2*k,k-2]/(k+1)!]; Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 22 2019 *)
  • PARI
    tabl(nn) = {for (n=1, nn, for (k=1, n-1, print1(n!*binomial(2*k, k-2)/(k+1)!, ", ");); print1(binomial(2*n, n)/(n+1), ", "); print(););} \\ Michel Marcus, Jul 16 2013
    
  • Sage
    def T(n, k):
        if (k==n): return catalan_number(n)
        else: return factorial(n)*binomial(2*k, k-2)/factorial(k+1)
    [[T(n,k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 22 2019
    

Formula

T(n,k) = n!*binomial(2k, k-2)/(k+1)! for k < n;
T(n,n) = binomial(2n, n)/(n+1) = A000108(n).

A113857 a(n) = binomial(4+2*n, n) * binomial(9+2*n, 4+n).

Original entry on oeis.org

126, 2772, 48048, 772200, 12033450, 184940756, 2824549728, 43028530272, 655081791000, 9977399586000, 152112583402560, 2322021633001200, 35496198345658050, 543418421128852500, 8331507823355640000, 127919340117331963200, 1966759854303978934200, 30279186980267369086800
Offset: 0

Views

Author

Zerinvary Lajos, Feb 02 2006

Keywords

Comments

If one uses the "table" view of array A062190, the sequence appears as the fourth column right from the middle in the "formatted as a triangular array" subpanel.

Examples

			a(0) = C(4+2*n,n)*C(9+2*n,4+n) = C(4,0)*C(9,4) = 1*126 = 126.
a(7) = C(4+2*7,7)*C(9+2*7,4+7) = C(18,7)*C(23,11) = 31824*1352078 = 43028530272.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Binomial[4+2*n, n] * Binomial[9+2*n, 4+n]; Array[a, 20, 0] (* Amiram Eldar, Sep 05 2025 *)
  • PARI
    a(n)={binomial(4+2*n, n) * binomial(9+2*n, 4+n)} \\ Andrew Howroyd, Jan 07 2020

Formula

a(n) = A062190(4+2*n, 4+n).
a(n) = A002694(n+2)*A001700(n+4). - R. J. Mathar, Nov 28 2008
a(n) ~ 2^(4*n+13) / (Pi*n). - Amiram Eldar, Sep 05 2025

Extensions

Definition rephrased by R. J. Mathar, Nov 28 2008
Edited and more terms added by Andrew Howroyd, Jan 07 2020

A141134 Hankel transform of C(2n+4,n+4).

Original entry on oeis.org

1, -8, 8, 1, 1, -16, 16, 1, 1, -24, 24, 1, 1, -32, 32, 1, 1, -40, 40, 1, 1, -48, 48, 1, 1, -56, 56, 1, 1, -64, 64, 1, 1, -72, 72, 1, 1, -80, 80, 1, 1, -88, 88, 1, 1, -96, 96, 1, 1, -104, 104
Offset: 0

Views

Author

Paul Barry, Jun 06 2008

Keywords

Comments

Hankel transform of A002694(n+2).
Hankel transform of A002694(n+1) is sin(Pi*n/2)*(cos(Pi*n)/2-1/2).

Crossrefs

Cf. A002694.

Programs

  • Mathematica
    LinearRecurrence[{-2,-3,-4,-3,-2,-1},{1,-8,8,1,1,-16},60] (* Harvey P. Dale, Jun 22 2025 *)

Formula

G.f.: ( 1-6*x-5*x^2-3*x^3-2*x^4-x^5 ) / ( (1+x)^2*(x^2+1)^2 ).

A085391 Square array of centered numbers, read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 4, 5, 1, 0, 1, 5, 10, 7, 1, 0, 1, 6, 15, 19, 9, 1, 0, 1, 7, 21, 35, 31, 11, 1, 0, 1, 8, 28, 56, 69, 46, 13, 1, 0, 1, 9, 36, 84, 126, 121, 64, 15, 1, 0, 1, 10, 45, 120, 210, 251, 195, 85, 17, 1, 0, 1, 11, 55, 165, 330, 462, 456, 295, 109, 19, 1, 0
Offset: 0

Views

Author

Paul Barry, Jul 02 2003

Keywords

Examples

			Rows begin
0 0 0 0 0 0 ...
1 1 1 1 1 1 ...
1 3 5 7 9 11 ...
1 4 10 19 31 46 ...
1 5 15 35 69 121...
		

Crossrefs

Formula

Square array T(n, k)=C(n+k, k)-C(n, k).
Row k has g.f. (1-x^k)/(1-x)^(k+1).

A090985 Triangle read by rows: T(n,k) is the number of dissections of a convex n-gon by nonintersecting diagonals, having exactly k triangles (n >= 2, k >= 0).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 5, 0, 5, 4, 6, 21, 0, 14, 8, 35, 28, 84, 0, 42, 25, 80, 216, 120, 330, 0, 132, 64, 309, 540, 1155, 495, 1287, 0, 429, 191, 890, 2475, 3080, 5720, 2002, 5005, 0, 1430, 540, 3058, 7788, 16302, 16016, 27027, 8008, 19448, 0, 4862, 1616, 9580, 30108, 54964, 96005, 78624, 123760, 31824, 75582, 0, 16796
Offset: 2

Views

Author

Emeric Deutsch, Feb 28 2004

Keywords

Comments

T(n,n-2) = [binomial(2n-4, n-2)]/(n-1) = Catalan(n-2) (A000108).
T(n,n-4) = binomial(2n-5, n-4) (A002054).
T(n,n-5) = binomial(2n-6, n-5) (A002694).
T(n,0) = A046736(n).
Row sums give the little Schroeder numbers (A001003).

Examples

			T(5,1)=5 because the dissections of a convex pentagon having exactly one triangle are obtained by the placement of a diagonal between any pair of non-adjacent vertices.
T(6,0)=4 because the dissections of a convex hexagon with no triangles are obtained by the null placement and by placing one diagonal between any of the 3 pairs of opposite vertices.
Triangle starts:
  1;
  0,  1;
  1,  0,  2;
  1,  5,  0,  5;
  4,  6, 21,  0, 14;
  8, 35, 28, 84,  0, 42;
  ...
		

Crossrefs

Programs

  • Maple
    T := (n,k)->binomial(n+k-2,k)*sum(binomial(n-2+k+i,i)*binomial(n-3-k-i,i-1), i=0..floor((n-2-k)/2))/(n-1): seq(seq(T(n,k),k=0..n-2),n=2..14);
  • Mathematica
    T [n_, k_] := Binomial[n+k-2, k] Sum[Binomial[n-2+k+i, i] Binomial[n-3-k-i, i-1], {i, 0, (n-2-k)/2}]/(n-1);
    Table[T[n, k], {n, 2, 12}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)

Formula

T(n, k) = binomial(n+k-2, k)*(Sum_{i=0..floor((n-2-k)/2)} binomial(n-2+k+i, i)*binomial(n-3-k-i, i-1))/(n-1).
G.f.: G=G(t, z) satisfies (1-t)G^3 + (1+t)zG^2 - z^2*(1+z)G + z^4 = 0.

A113888 a(n) = C(2*n+1,n)*C(2*n+6,n+1).

Original entry on oeis.org

6, 84, 1200, 17325, 252252, 3699696, 54609984, 810616950, 12092280200, 181176906768, 2725140250560, 41132585656890, 622787147955000, 9456196695480000, 143946539451475200, 2196309308974461450, 33581927605139911800, 514470608092210770000, 7895695609776494520000
Offset: 0

Views

Author

Zerinvary Lajos, Jan 28 2006

Keywords

Examples

			If n=0 then C(1+2*0,0+0)*C(6+2*0,1+0) = C(1,0)*C(6,1) = 1*6 = 6.
If n=4 then C(1+2*4,0+4)*C(6+2*4,1+4) = C(9,4)*C(14,5) = 126*2002 = 252252.
If n=10 then C(1+2*10,0+10)*C(6+2*10,1+10) = C(21,10)*C(26,11) = 352716*7726160 = 2725140250560.
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n+1,n]Binomial[2n+6,n+1],{n,0,20}] (* Harvey P. Dale, Jun 14 2011 *)

Formula

From Amiram Eldar, Sep 06 2025: (Start)
a(n) = A001700(n) * A002694(n+3).
a(n) ~ 2^(4*n+7) / (Pi*n). (End)

Extensions

Edited by N. J. A. Sloane, Feb 03 2007
Previous Showing 31-40 of 42 results. Next