cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A002867 a(n) = binomial(n,floor(n/2))*(n+1)!.

Original entry on oeis.org

1, 2, 12, 72, 720, 7200, 100800, 1411200, 25401600, 457228800, 10059033600, 221298739200, 5753767219200, 149597947699200, 4487938430976000, 134638152929280000, 4577697199595520000, 155641704786247680000, 5914384781877411840000, 224746621711341649920000
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000246.

Programs

  • Mathematica
    Table[Binomial[n,Floor[n/2]](n+1)!,{n,0,20}] (* Harvey P. Dale, Sep 04 2018 *)

Formula

a(n) = 2^n * A000246(n+1).
E.g.f.: 1/(sqrt(1+2*x)*(1-2*x)^(3/2)) = 1/(sqrt(1-4*x^2)*(1-2*x)). - Paul Barry, Jul 22 2005
Conjecture: a(n) - 2*a(n-1) - 4*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012
Sum_{n>=0} 1/a(n) = (StruveL(-1,1/2) + StruveL(0,1/2))*Pi/2, where StruveL is the modified Struve function. - Amiram Eldar, Aug 15 2025

Extensions

More terms from James Sellers, Jul 10 2000

A002871 a(n) = max_{k=0..n} 2^k*A048993(n,k).

Original entry on oeis.org

1, 2, 4, 12, 48, 200, 1040, 5600, 33600, 222432, 1460928, 11487168, 84713728, 731574272, 6314147840, 55456727040, 548291597568, 5226494727168, 54361802626560, 586042688924160, 6149776714099200, 72895623466265600, 855187250563024896
Offset: 0

Views

Author

Keywords

Comments

Original name: Sorting numbers (see Motzkin article for details).
For n>0, a(n) is also the maximum term in row n of the triangle in A227450. - Danny Rorabaugh, Oct 24 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= n-> max(seq(2^k*Stirling2(n, k), k=0..n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 26 2013
  • Mathematica
    a[n_] := Max[Table[2^k*StirlingS2[n, k], {k, 0, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 25 2015 *)
  • PARI
    a(n) = vecmax(vector(n+1, k, 2^(k-1)*stirling(n, k-1, 2))); \\ Michel Marcus, Feb 25 2015

Formula

a(n) = max{2^k*Stirling2(n,k), k=0..n}. - Sean A. Irvine, Mar 26 2013

Extensions

More terms from Sean A. Irvine, Mar 26 2013
New name from Danny Rorabaugh, Oct 24 2015

A173227 Partial sums of A000262.

Original entry on oeis.org

1, 2, 5, 18, 91, 592, 4643, 42276, 436629, 5033182, 63974273, 888047414, 13358209647, 216334610860, 3751352135263, 69325155322184, 1359759373992105, 28206375825238458, 616839844140642301, 14181213537729200474, 341879141423814854915, 8623032181189674581256
Offset: 0

Views

Author

Jonathan Vos Post, Feb 13 2010

Keywords

Comments

Partial sums of the number of "sets of lists": number of partitions of {1,..,n} into any number of lists, where a list means an ordered subset. The subsequence of primes begins: 2, 5, 4643, 616839844140642301.

Examples

			a(20) = 1 + 1 + 3 + 13 + 73 + 501 + 4051 + 37633 + 394353 + 4596553 + 58941091 + 824073141 + 12470162233 + 202976401213 + 3535017524403 + 65573803186921 + 1290434218669921 + 26846616451246353 + 588633468315403843 + 13564373693588558173 + 327697927886085654441.
		

Crossrefs

Programs

  • Magma
    l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
    [n eq 0 select 1 else 1 + (&+[ Factorial(j)*( l(j,-1) - l(j-1,-1) ): j in [1..n]]): n in [0..25]]; // G. C. Greubel, Mar 09 2021
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
           b(n-j)*j!*binomial(n-1, j-1), j=1..n))
        end:
    a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 11 2016
  • Mathematica
    With[{m = 25}, CoefficientList[Exp[x/(1-x)] + O[x]^m, x] Range[0, m-1]!// Accumulate] (* Jean-François Alcover, Nov 21 2020 *)
    Table[1 +Sum[j!*(LaguerreL[j, -1] -LaguerreL[j-1, -1]), {j,n}], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    [1 + sum(factorial(j)*(gen_laguerre(j,0,-1) - gen_laguerre(j-1,0,-1)) for j in (1..n)) for n in (0..30)] # G. C. Greubel, Mar 09 2021
    

Formula

From Vaclav Kotesovec, Oct 25 2016: (Start)
a(n) = 2*n*a(n-1) - (n^2 - n + 1)*a(n-2) + (n-2)*(n-1)*a(n-3).
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/sqrt(2) * (1 - 5/(48*sqrt(n))).
(End)
a(n) = 1 + Sum_{j=1..n} j!*( LaguerreL(j,-1) - LaguerreL(j-1,-1) ). - G. C. Greubel, Mar 09 2021
Previous Showing 21-23 of 23 results.