cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 67 results. Next

A264542 a(n) = denominator(Jtilde3(n)).

Original entry on oeis.org

1, 2, 96, 17280, 860160, 774144000, 408748032000, 347163328512000, 266621436297216000, 163172319013896192000, 67488959156767948800, 14865958099336613068800, 785345441564243189248819200, 530893518497428395932201779200, 2831432098652951444971742822400, 221701133324526098141287462993920000
Offset: 0

Views

Author

Michel Marcus, Nov 17 2015

Keywords

Comments

Jtilde3(n) are Apéry-like rational numbers that arise in the calculation of zetaQ(3), the spectral zeta function for the non-commutative harmonic oscillator using a Gaussian hypergeometric function.

Crossrefs

Cf. A002117 (zeta(3)), A260832 (Jtilde2), A264541 (numerators).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    Denominator[Table[-2*Sum[(-1)^k*Binomial[-1/2, k]^2*Binomial[n, k]* Sum[1/(Binomial[-1/2, j]^2*(2*j + 1)^3), {j, 0, k - 1}], {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Oct 23 2017 *)
  • PARI
    a(n) = denominator(-2*sum(k=0, n, (-1)^k*binomial(-1/2, k)^2*binomial(n, k)*sum(j=0, k-1, 1/(binomial(-1/2,j)^2*(2*j+1)^3))));

Formula

Jtilde3(n) = J3(n) - J3(0)*Jtilde2(n) (normalization).
4n^2*J3(n) - (8n^2-8n+3)*J3(n-1) + 4(n-1)^2*J3(n-2) = 2^n*(n-1)!/(2n-1)!! with J3(0)=7*zeta(3) and J3(1)=21*zeta(3)/4 + 1/2.

A143414 Apéry-like numbers for the constant 1/e: a(n) = (1/(n-1)!)*Sum_{k = 0..n-1} binomial(n-1,k)*(2*n-k)!.

Original entry on oeis.org

0, 2, 30, 492, 9620, 222630, 5989242, 184139480, 6377545512, 245868202890, 10446648201110, 485126443539012, 24449173476952380, 1329144227959100462, 77535552689576436210, 4831278674685354629040, 320262424087652686405712
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

This sequence satisfies the recursion (n-1)^2*a(n) - n^2*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1), which leads to a rapidly converging series for the constant 1/e: 1/e = 1/2 - 2 * Sum_{n >= 2} (-1)^n * n^2/(a(n)*a(n-1)).
Notice the striking resemblance to the theory of the Apéry numbers A(n) = A005258(n), which satisfy a similar recurrence relation n^2*A(n) - (n-1)^2*A(n-2) = (11*n^2-11*n+3)*A(n-1) and which appear in the series acceleration formula zeta(2) = 5*Sum_{n>=1} 1/(n^2*A(n)*A(n-1)). Compare with A143413 and A143415.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    a := n -> 1/(n-1)!*add (binomial(n-1,k)*(2*n-k)!,k = 0..n-1): seq(a(n),n = 0..19);
    # Alternative:
    A143414 := n -> `if`(n=0, 0, ((2*n)!/(n-1)!)*hypergeom([1-n], [-2*n], 1)):
    seq(simplify(A143414(n)), n = 0..16); # Peter Luschny, May 14 2020
  • Mathematica
    Table[(1/(n-1)!)*Sum[Binomial[n-1,k]*(2*n-k)!, {k,0,n-1}], {n,0,50}] (* G. C. Greubel, Oct 24 2017 *)
  • PARI
    for(n=0,25, print1((1/(n-1)!)*sum(k=0,n-1, binomial(n-1,k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Oct 24 2017

Formula

a(n) = (1/(n-1)!)*Sum_{k = 0..n-1} binomial(n-1,k)*(2*n-k)!.
Recurrence relation: a(0) = 0, a(1) = 2, (n-1)^2*a(n) - n^2*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1), n >= 2.
Let b(n) denote the solution to this recurrence with initial conditions b(0) = -1, b(1) = 1. Then b(n) = A143413(n) = (1/(n-1)!)*Sum_{k = 0..n+1} (-1)^k*binomial(n+1,k)*(2*n-k)!.
The rational number b(n)/a(n) is equal to the Padé approximation to exp(x) of degree (n+1,n-1) evaluated at x = -1 and b(n)/a(n) -> 1/e very rapidly. For example, |b(100)/a(100) - 1/e| is approximately 2.177 * 10^(-437).
The identity a(n)*b(n-1) - a(n-1)*b(n) = (-1)^n *2*n^2 leads to rapidly converging series for the constants 1/e and e: 1/e = 1/2 - 2*Sum_{n >= 2} (-1)^n * n^2/(a(n)*a(n-1)) = 1/2 - 2*(2^2/(2*30) - 3^2/(30*492) + 4^2/(492*9620) - ...); e = 2 * Sum_{n >= 1} (-1)^n * n^2/(b(n)*b(n-1)) = 2*(1 + 2^2/(1*11) - 3^2/(11*181) + 4^2/(181*3539) - ...).
a(n) = (BesselK(n-1/2,1/2)-(1-2*n)*BesselK(n+1/2,1/2)) * exp(1/2)/(2*Pi^(1/2)). - Mark van Hoeij, Nov 12 2009
a(n) = ((2*n)!/(n-1)!)*hypergeom([1-n], [-2*n], 1) for n > 0. - Peter Luschny, May 14 2020
a(n) ~ 2^(2*n + 1/2) * n^(n+1) / exp(n - 1/2). - Vaclav Kotesovec, Jul 11 2021

A143415 Another sequence of Apery-like numbers for the constant 1/e: a(n) = 1/(n+1)!*Sum_{k = 0..n-1} C(n-1,k)*(2*n-k)!.

Original entry on oeis.org

0, 1, 5, 41, 481, 7421, 142601, 3288205, 88577021, 2731868921, 94969529101, 3675200329841, 156725471006105, 7302990263511541, 369216917569411601, 20130327811188977621, 1177435382675193700021, 73546210385434763486705
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

This sequence is a modified version of A143414.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    a := n -> 1/(n+1)!*add (binomial(n-1,k)*(2*n-k)!,k = 0..n-1): seq(a(n),n = 0..19);
    # Alternative:
    A143415 := n -> `if`(n=0, 0, ((2*n)!/(n+1)!)*hypergeom([1-n], [-2*n], 1)):
    seq(simplify(A143415(n)), n = 0..17); # Peter Luschny, May 14 2020
  • Mathematica
    Table[(1/(n+1)!)*Sum[Binomial[n-1,k]*(2*n-k)!, {k,0,n-1}], {n,0,50}] (* G. C. Greubel, Oct 24 2017 *)
  • PARI
    for(n=0,25, print1((1/(n+1)!)*sum(k=0,n-1, binomial(n-1,k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Oct 24 2017

Formula

a(n) = 1/(n+1)!*sum {k = 0..n-1} C(n-1,k)*(2*n-k)!.
a(n) = 1/(n*(n+1))*A143414(n) for n > 0.
Recurrence relation: a(0) = 0, a(1) = 1, (n-1)*(n+1)*a(n) - (n-2)*n*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1) for n >= 2. 1/e = 1/2 - 2 * Sum_{n = 1..inf} (-1)^(n+1)/(n*(n+2)*a(n)*a(n+1)) = 1/2 - 2*[1/(3*1*5) - 1/(8*5*41) + 1/(15*41*481) - 1/(24*481*7421) + ...] .
Conjectural congruences: for r >= 0 and prime p, calculation suggests the congruences a(p^r*(p+1)) == a(p^r) (mod p^(r+1)) may hold.
a(n) = ((2*n)!/(n+1)!)*hypergeom([1-n], [-2*n], 1) for n > 0. - Peter Luschny, May 14 2020

A219692 a(n) = Sum_{j=0..floor(n/3)} (-1)^j C(n,j) * C(2j,j) * C(2n-2j,n-j) * (C(2n-3j-1,n) + C(2n-3j,n)).

Original entry on oeis.org

2, 6, 54, 564, 6390, 76356, 948276, 12132504, 158984694, 2124923460, 28877309604, 398046897144, 5554209125556, 78328566695736, 1114923122685720, 15999482238880464, 231253045986317814, 3363838379489630916
Offset: 0

Views

Author

Jason Kimberley, Nov 25 2012

Keywords

Comments

This sequence is s_18 in Cooper's paper.
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Every prime eventually divides some term of this sequence. - Amita Malik, Aug 20 2017

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Magma
    s_18 := func where C is Binomial;
    
  • Mathematica
    Table[Sum[(-1)^j*Binomial[n,j]*Binomial[2j,j]*Binomial[2n-2j, n-j]* (Binomial[2n-3j-1,n] +Binomial[2n-3j,n]), {j,0,Floor[n/3]}], {n,0,20}] (* G. C. Greubel, Oct 24 2017 *)
  • PARI
    {a(n) = sum(j=0,floor(n/3), (-1)^j*binomial(n,j)*binomial(2*j,j)* binomial(2*n-2*j,n-j)*(binomial(2*n-3*j-1,n) +binomial(2*n-3*j,n)))}; \\ G. C. Greubel, Apr 02 2019
    
  • Sage
    [sum((-1)^j*binomial(n,j)*binomial(2*j,j)*binomial(2*n-2*j,n-j)* (binomial(2*n-3*j-1,n)+binomial(2*n-3*j,n)) for j in (0..floor(n/3))) for n in (0..20)] # G. C. Greubel, Apr 02 2019

Formula

1/Pi
= 2*3^(-5/2) Sum {k>=0} (n a(n)/18^n) [Cooper, equation (42)]
= 2*3^(-5/2) Sum {k>=0} (n a(n)/A001027(n)).
G.f.: 1+hypergeom([1/8, 3/8],[1],256*x^3/(1-12*x)^2)^2/sqrt(1-12*x). - Mark van Hoeij, May 07 2013
Conjecture D-finite with recurrence: n^3*a(n) -2*(2*n-1)*(7*n^2-7*n+3)*a(n-1) +12*(4*n-5)*(n-1)* (4*n-3)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
a(n) ~ 3 * 2^(4*n + 1/2) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023

A260667 a(n) = (1/n^2) * Sum_{k=0..n-1} (2k+1)*S(k,n)^2, where S(k,x) denotes the polynomial Sum_{j=0..k} binomial(k,j)*binomial(x,j)*binomial(x+j,j).

Original entry on oeis.org

1, 37, 1737, 102501, 6979833, 523680739, 42129659113, 3572184623653, 315561396741609, 28807571694394593, 2701627814373536601, 259121323945378645947, 25330657454041707496017, 2516984276442279642274311, 253667099464270541534450025, 25884030861250181046253181349, 2670255662315910532447096232073
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 14 2015

Keywords

Comments

Conjecture: For k = 0,1,2,... define S(k,x):= Sum_{j=0..k} binomial(k,j)*binomial(x,j)*binomial(x+j,j).
(i) For any integer n > 0, the polynomial (1/n^2) * Sum_{k=0..n-1}(2k+1)*S(k,x)^2 is integer-valued (and hence a(n) is always integral).
(ii) Let r be 0 or 1, and let x be any integer. Then, for any positive integers m and n, we have the congruence
Sum_{k=0..n-1} (-1)^(k*r)*(2k+1)*S(k,x)^(2m) == 0 (mod n).
(iii) For any odd prime p, we have Sum_{k=0..p-1} S(k,-1/2)^2 == (-1/p)(1-7*p^3*B_{p-3}) (mod p^4), where (a/p) is the Legendre symbol, and B_0,B_1,B_2,... are Bernoulli numbers. Also, for any prime p > 3 we have Sum_{k=0..p-1} S(k,-1/3)^2 == p - (14/3)*(p/3)*p^3*B_{p-2}(1/3) (mod p^4), where B_n(x) denotes the Bernoulli polynomial of degree n; Sum_{k=0..p-1} S(k,-1/4)^2 == (2/p)*p - 26*(-2/p)*p^3*E_{p-3} (mod p^4), where E_0,E_1,E_2,... are Euler numbers; Sum_{k=0..p-1} S(k,-1/6)^2 == (3/p)*p - (155/12)*(-1/p)*p^3*B_{p-2}(1/3) (mod p^4).
Our conjecture is motivated by a conjecture of Kimoto and Wakayama which states that Sum_{k=0..p-1} S(k,-1/2)^2 == (-1/p) (mod p^3) for any odd prime p. The Kimoto-Wakayama conjecture was confirmed by Long, Osburn and Swisher in 2014.
For more related conjectures, see Sun's paper arXiv.1512.00712. - Zhi-Wei Sun, Dec 03 2015

Examples

			a(2) = 37 since (1/2^2) * Sum_{k=0..1} (2k+1)*S(k,2)^2 = (S(0,2)^2 + 3*S(1,2)^2)/4 = (1^2 + 3*7^2)/4 = 148/4 = 37.
G.f. = x + 37*x^2 + 1737*x^3 + 102501*x^4 + 6979833*x^5 + 523680739*x^6 + ...
		

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    # Implementing Mark van Hoeij's formula.
    c := n -> binomial(2*n, n)/(n + 1):
    h := n -> simplify(hypergeom([-n,-n,-n], [1,-2*n], 1)):
    b := n -> c(n)^2*((n+11)*(2+4*n)^2*h(n+1)^2-2*(n+1)*(11*n+16)*(1+2*n)*h(n)*h(n+1)-h(n)^2*(n+1)^3)/(25*(n+2)):
    a := n -> b(n-1): seq(a(n), n = 1..17);  # Peter Luschny, Nov 11 2022
  • Mathematica
    S[k_,x_]:=S[k,x]=Sum[Binomial[k,j]Binomial[x,j]Binomial[x+j,j],{j,0,k}]
    a[n_]:=a[n]=Sum[(2k+1)*S[k,n]^2,{k,0,n-1}]/n^2
    Do[Print[n," ",a[n]],{n,1,17}]

Formula

a(n) ~ phi^(10*n + 3) / (10 * Pi^2 * n^3), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 06 2021
Conjecture: a(p-1) == 1 (mod p^3) for all primes p >= 5. - Peter Bala, Aug 15 2022
a(n) = ((n+10)*A005258(n)^2 - (11*n+5)*A005258(n)*A005258(n-1) - n*A005258(n-1)^2)/(25*(n+1)). - Mark van Hoeij, Nov 11 2022

A262177 Decimal expansion of Q_5 = zeta(5) / (Sum_{k>=1} (-1)^(k+1) / (k^5 * binomial(2k, k))), a conjecturally irrational constant defined by an Apéry-like formula.

Original entry on oeis.org

2, 0, 9, 4, 8, 6, 8, 6, 2, 2, 0, 1, 0, 0, 3, 6, 9, 9, 3, 8, 5, 0, 2, 4, 9, 2, 9, 3, 7, 3, 2, 9, 4, 1, 6, 3, 0, 2, 9, 6, 7, 5, 8, 7, 4, 8, 5, 6, 7, 7, 8, 1, 8, 2, 7, 4, 0, 1, 2, 7, 5, 8, 7, 8, 3, 7, 4, 3, 8, 0, 0, 7, 8, 7, 6, 8, 4, 6, 8, 1, 5, 6, 3, 2, 0, 6, 0, 4, 4, 2, 3, 2, 0, 9, 0, 4, 3, 1, 3, 6, 9, 3, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 14 2015

Keywords

Comments

The similar constant Q_3 = zeta(3) / (Sum_{k>=1} (-1)^(k+1) / (k^3 * binomial(2k, k))) evaluates to 5/2.

Examples

			2.09486862201003699385024929373294163029675874856778182740127587837438...
		

Crossrefs

Cf. A013663.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    Q5 = Zeta[5]/Sum[(-1)^(k+1)/(k^5*Binomial[2k, k]), {k, 1, Infinity}]; RealDigits[Q5, 10, 103] // First
  • PARI
    zeta(5)/suminf(k=1, (-1)^(k+1)/(k^5*binomial(2*k,k))) \\ Michel Marcus, Sep 14 2015

Formula

Equals 2*zeta(5)/6F5(1,1,1,1,1,1; 3/2,2,2,2,2; -1/4).

A047889 Number of permutations in S_n with longest increasing subsequence of length <= 4.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 694, 4582, 33324, 261808, 2190688, 19318688, 178108704, 1705985883, 16891621166, 172188608886, 1801013405436, 19274897768196, 210573149141896, 2343553478425816, 26525044132374656, 304856947930144656
Offset: 0

Views

Author

Eric Rains (rains(AT)caltech.edu), N. J. A. Sloane

Keywords

Comments

Or, number of permutations in S_n that avoid the pattern 12345, - N. J. A. Sloane, Mar 19 2015
Also, the dimension of the space of SL(4)-invariants in V^m ⊗ (V^*)^m, where V is the standard 4-dimensional representation of SL(4) and V^* its dual. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

Examples

			G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 119*x^5 + 694*x^6 + 4582*x^7 + ...
		

Crossrefs

A column of A047888.
Column k=4 of A214015.
Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208. - N. J. A. Sloane, Mar 19 2015

Programs

  • Maple
    A:=rsolve({a(0) = 1, a(1) = 1, (n^3 + 16*n^2 + 85*n + 150)*a(n + 2) = (20*n^3 + 182*n^2 + 510*n + 428)*a(n + 1) - (64*n^3 + 256*n^2 + 320*n +128)*a(n)}, a(n), makeproc): # Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
  • Mathematica
    Flatten[{1,RecurrenceTable[{64*(-1+n)^2*n*a[-2+n]-2*(-12 + 11*n + 31*n^2 + 10*n^3)*a[-1+n] + (3+n)^2*(4+n)*a[n]==0,a[1]==1,a[2]==2},a,{n,20}]}] (* Vaclav Kotesovec, Sep 10 2014 *)
  • PARI
    {a(n) = my(v); if( n<2, n>=0, v = vector(n+1, k, 1); for(k=2, n, v[k+1] = ((20*k^3 + 62*k^2 + 22*k - 24) * v[k] - 64*k*(k-1)^2 * v[k-1]) / ((k+3)^2 * (k+4))); v[n+1])}; /* Michael Somos, Apr 19 2015 */

Formula

a(0)=1, a(1)=1, (n^3 + 16*n^2 + 85*n + 150)*a(n+2) = (20*n^3 + 182*n^2 + 510*n + 428)*a(n+1) - (64*n^3 + 256*n^2 + 320*n + 128)*a(n). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
a(n) = (64*(n+1)*(2*n^3 + 21*n^2 + 76*n + 89)*A002895(n) -(8*n^4 + 104*n^3 + 526*n^2 + 1098*n + 776) *A002895(n+1)) / (3*(n+2)^3*(n+3)^3*(n+4)). - Mark van Hoeij, Jun 02 2010
a(n) ~ 3 * 2^(4*n + 9) / (n^(15/2) * Pi^(3/2)). - Vaclav Kotesovec, Sep 10 2014

Extensions

More terms from Naohiro Nomoto, Mar 01 2002
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar

A260793 Primes p such that p does not divide any term of the Apéry-like sequence A000172 (also known as Type I primes).

Original entry on oeis.org

3, 11, 17, 19, 43, 83, 89, 97, 113, 137, 139, 163, 193, 211, 233, 241, 283, 307, 313, 331, 347, 353, 379, 401, 409, 419, 433, 443, 491, 499, 523, 547, 569, 587, 601, 617, 619, 641, 643, 673, 811, 827, 859, 881, 929, 947, 953, 977, 1009, 1019, 1033, 1049, 1051
Offset: 1

Views

Author

N. J. A. Sloane, Aug 05 2015

Keywords

Comments

See Schulte et al. (2014) for the precise definition of Type I primes.

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see this sequence, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    maxPrime = 1051;
    maxPi = PrimePi @ maxPrime;
    okQ[p_] := AllTrue[Range[3 maxPi (* coeff 3 is empirical *)], GCD[HypergeometricPFQ[{-#, -#, -#}, {1, 1}, -1], p] == 1&];
    Select[Prime[Range[maxPi]], okQ] (* Jean-François Alcover, Jan 13 2020 *)

Extensions

Edited by N. J. A. Sloane, Aug 22 2017

A133370 Primes p such that p does not divide any term of the Apery sequence A005259 .

Original entry on oeis.org

2, 3, 7, 13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 149, 157, 167, 173, 199, 223, 229, 239, 263, 269, 277, 281, 311, 313, 317, 337, 349, 353, 359, 373, 383, 389, 397, 401, 409, 421, 449, 457, 461, 467, 479, 487, 491
Offset: 1

Views

Author

Philippe Deléham, Oct 27 2007

Keywords

Comments

Malik and Straub give arguments suggesting that this sequence is infinite. - N. J. A. Sloane, Aug 06 2017

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    NeverDividesLucasSeqQ[a_, p_] := And @@ Table[Mod[a[n], p]>0, {n, 0, p-1}];
    A3[a_, b_, c_, n_ /; n < 0] = 0;
    A3[a_, b_, c_, 0] = 1;
    A3[a_, b_, c_, n_] := A3[a, b, c, n] = (((2n - 1)(a (n-1)^2 + a (n-1) + b)) A3[a, b, c, n-1] - c (n-1)^3 A3[a, b, c, n-2])/n^3;
    A3[a_, b_, c_, d_, n_ /; n < 0] = 0;
    Agamma[n_] := A3[17, 5, 1, n];
    Select[Range[1000], PrimeQ[#] && NeverDividesLucasSeqQ[Agamma, #]&] (* Jean-François Alcover, Aug 05 2018, copied from Amita Malik's notebook *)

Extensions

Terms a(16) onwards computed by Amita Malik - N. J. A. Sloane, Aug 21 2017

A291275 Primes p such that p does not divide any term of the Apéry-like sequence A005258.

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 41, 61, 73, 89, 101, 109, 137, 149, 173, 181, 197, 229, 233, 269, 277, 313, 337, 349, 353, 373, 397, 401, 409, 433, 457, 461, 541, 557, 601, 613, 641, 661, 673, 677, 701, 709, 733, 761, 769, 797, 821, 829, 853, 857, 877, 929, 941, 977
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    maxPrime = 977;
    maxPi = PrimePi @ maxPrime;
    okQ[p_] := AllTrue[Range[3 maxPi (* coeff 3 is empirical *)], GCD[HypergeometricPFQ[{# + 1, -#, -#}, {1, 1}, 1], p] == 1&];
    Select[Prime[Range[maxPi]], okQ] (* Jean-François Alcover, Jan 13 2020 *)
Previous Showing 31-40 of 67 results. Next