cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 55 results. Next

A241883 Number of ways 1/n can be expressed as the sum of four distinct unit fractions: 1/n = 1/w + 1/x + 1/y + 1/z satisfying 0 < w < x < y < z.

Original entry on oeis.org

6, 71, 272, 586, 978, 1591, 1865, 3115, 3772, 4964, 4225, 8433, 4987, 10667, 13659, 10845, 7513, 17360, 9569, 28554, 23309, 17220, 12326, 37554, 19984, 24091, 31056, 42343, 16095, 57001, 15076, 42655, 46885, 38416, 77887, 71959, 16692, 42054, 68894, 95914, 24566, 100023, 24224, 99437, 108756, 41907, 29711, 127069, 52811, 94745, 83433
Offset: 1

Views

Author

Robert G. Wilson v, Apr 30 2014

Keywords

Examples

			1/1 = 1/2 + 1/3 + 1/7  + 1/42
    = 1/2 + 1/3 + 1/8  + 1/24
    = 1/2 + 1/3 + 1/9  + 1/18
    = 1/2 + 1/3 + 1/10 + 1/15
    = 1/2 + 1/4 + 1/5  + 1/20
    = 1/2 + 1/4 + 1/6  + 1/12
so a(1) = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Length@ Solve[1/n == 1/w + 1/x + 1/y + 1/z && 0 < w < x < y < z, {w, x, y, z}, Integers]; Array[f, 21]

A092666 a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), with 0 < x_1 <= ... <= x_k = n.

Original entry on oeis.org

1, 1, 1, 2, 1, 7, 1, 10, 10, 26, 1, 107, 1, 83, 375, 384, 1, 1418, 1, 4781, 7812, 1529, 1, 33665, 9789, 4276, 27787, 168107, 1, 584667, 1, 586340, 1177696, 52334, 5285597, 14746041, 1, 218959, 13092673, 84854683, 1, 279357910, 1, 491060793, 2001103921
Offset: 1

Views

Author

Max Alekseyev, Mar 02 2004

Keywords

Examples

			a(4) = 2 since there are two fractions 1=1/2+1/4+1/4 and 1=1/4+1/4+1/4+1/4.
		

Crossrefs

Formula

a(n) = A020473(n) - A020473(n-1).
a(n) = 1 if n is prime.

Extensions

Edited by Max Alekseyev, May 05 2010

A325619 Heinz numbers of integer partitions whose reciprocal factorial sum is 1.

Original entry on oeis.org

2, 9, 375, 15625
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      9: {2,2}
    375: {2,3,3,3}
  15625: {3,3,3,3,3,3}
		

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325624.

Programs

  • Mathematica
    Select[Range[100000],Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]==1&]

Formula

Contains prime(n)^(n!) for all n > 0, including 191581231380566414401 for n = 4.

A325620 Number of integer partitions of n whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 14, 14, 15, 16, 18, 19, 20, 22, 24, 25, 26, 28, 31, 33, 34, 36, 39, 41, 43, 45, 49, 52, 54, 57, 61, 65, 68, 71, 76, 80, 84, 88, 93, 98, 103, 107, 113
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The initial terms count the following partitions:
  1: (1)
  2: (1,1)
  3: (1,1,1)
  4: (2,2)
  4: (1,1,1,1)
  5: (2,2,1)
  5: (1,1,1,1,1)
  6: (2,2,1,1)
  6: (1,1,1,1,1,1)
  7: (2,2,1,1,1)
  7: (1,1,1,1,1,1,1)
  8: (2,2,2,2)
  8: (2,2,1,1,1,1)
  8: (1,1,1,1,1,1,1,1)
  9: (2,2,2,2,1)
  9: (2,2,1,1,1,1,1)
  9: (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[1/(#!)]]&]],{n,30}]

A325622 Number of integer partitions of n whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 3, 4, 5, 5, 5, 6, 3, 7, 6, 5, 6, 6, 6, 5, 6, 8, 5, 7, 5, 4, 8, 7, 7, 7, 7, 9, 9, 9, 10, 12, 6, 12, 8, 10, 7, 14, 10, 8, 11, 11, 12, 11, 10, 10, 12, 14, 11, 10, 9, 10, 12, 10, 15, 14, 11, 10
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The initial terms count the following partitions:
   1: (1)
   2: (2)
   3: (3)
   4: (4)
   4: (2,2)
   5: (5)
   6: (6)
   6: (3,3)
   7: (7)
   8: (8)
   8: (4,4)
   9: (9)
   9: (5,4)
   9: (3,3,3)
  10: (10)
  10: (5,5)
  11: (11)
  11: (4,4,3)
  11: (3,3,3,2)
  12: (12)
  12: (6,6)
  12: (4,4,4)
		

Crossrefs

Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325623.

Programs

  • Maple
    f:= proc(n) nops(select(proc(t) local i; (1/add(1/i!,i=t))::integer end proc, combinat:-partition(n))) end proc:
    map(f, [$1..70]); # Robert Israel, May 09 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Total[1/(#!)]]&]],{n,30}]
  • PARI
    a(n) = my(c=0); forpart(v=n, if(numerator(sum(i=1, #v, 1/v[i]!))==1, c++)); c; \\ Jinyuan Wang, Feb 25 2025

Extensions

a(61)-a(70) from Robert Israel, May 09 2024
a(71)-a(80) from Jinyuan Wang, Feb 25 2025

A156869 Triangle read by rows: T(n,k) = number of nondecreasing sequences of n positive integers with reciprocals adding up to k (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 14, 4, 1, 1, 147, 17, 4, 1, 1, 3462, 164, 18, 4, 1, 1, 294314, 3627, 167, 18, 4, 1, 1, 159330691, 297976, 3644, 168, 18, 4, 1, 1
Offset: 1

Views

Author

Jens Voß, Feb 17 2009

Keywords

Comments

Conjecture: T(2n + m, n + m) = T(2n, n) ( = A156870(n) ) if and only if m >= 0.
Yes, the diagonals are constant for n <= 2k. Any such sequence must have at least one 1; remove that 1, and you get a sequence for n-1,k-1. - Franklin T. Adams-Watters, Feb 20 2009
The next term will be a(37) = A002966(9). - M. F. Hasler, Feb 20 2009

Examples

			Triangle begins:
n=1:      1
n=2:      1,    1
n=3:      3,    1,   1
n=4:     14,    4,   1,  1
n=5:    147,   17,   4,  1, 1
n=6:   3462,  164,  18,  4, 1, 1
n=7: 294314, 3627, 167, 18, 4, 1, 1
For n = 4 and k = 2, the T(4, 2) = 4 sequences are (1, 2, 3, 6), (1, 2, 4, 4), (1, 3, 3, 3) and (2, 2, 2, 2) because 1/1 + 1/2 + 1/3 + 1/6 = 1/1 + 1/2 + 1/4 + 1/4 = 1/1 + 1/3 + 1/3 + 1/3 = 1/2 + 1/2 + 1/2 + 1/2 = 2.
		

Crossrefs

Cf. A002966 (column k=1), A156871 (row sums), A280519, A280520.
T(2n, n) = A156870(n).

Programs

  • PARI
    { A156869(n,k,m=1) = n==1 & return(numerator(k)==1 & denominator(k)>=m); sum( i=max(m,1\k+1),n\k, A156869(n-1, k-1/i, i)); } \\ M. F. Hasler, Feb 20 2009

Extensions

a(21)-a(36) from M. F. Hasler, Feb 20 2009

A226646 Number of ways to express m/n as Egyptian fractions in just three terms, that is, m/n = 1/x + 1/y + 1/z satisfying 1 <= x <= y <= z and read by antidiagonals.

Original entry on oeis.org

3, 1, 10, 1, 3, 21, 0, 3, 8, 28, 0, 1, 3, 10, 36, 0, 1, 3, 6, 12, 57, 0, 1, 2, 3, 10, 21, 42, 0, 0, 1, 4, 2, 10, 17, 70, 0, 0, 1, 3, 3, 8, 9, 28, 79, 0, 0, 0, 1, 3, 4, 7, 20, 26, 96, 0, 0, 1, 1, 2, 3, 4, 10, 21, 36, 62, 0, 0, 0, 1, 1, 7, 1, 7, 6, 21, 25, 160, 0, 0, 0, 1, 0, 3, 3, 6, 12, 12, 16, 57, 59
Offset: 1

Views

Author

Keywords

Comments

See A073101 for the 4/n conjecture due to Erdös and Straus.
The first upper diagonal is 10, 8, 6, 2, 4, 1, 2, 1, 2, 0, 3, 0, 0, 1, 0, 0, 1, 0, 1, 0,... .
The main diagonal is: 3, 3, 3, 3, 3, 3, ... since 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/4 + 1/4 = 1/3 + 1/3 + 1/3. See A002966(3).
The first lower diagonal is 1, 3, 3, 4, 3, 7, 3, 5, 4, 6, 3, 10, 3, 6, 6, 6, 3, 9, 3, 9, ... .
The antidiagonal sum is 3, 11, 25, 39, 50, 79, 79, 104, 131, 157, 140, 229, 169, 220, 295, 282, ... .

Examples

			../n
m/ 1...2...3...4...5...6...7...8...9..10..11...12..13...14...15 =Allocation nbr.
.1 3..10..21..28..36..57..42..70..79..96..62..160..59..136..196 A004194
.2 1...3...8..10..12..21..17..28..26..36..25...57..20...42...81 A226641
.3 1...3...3...6..10..10...9..20..21..21..16...28..11...33...36 A226642
.4 0...1...3...3...2...8...7..10...6..12...9...21...4...17...39 A192787
.5 0...1...2...4...3...4...4...7..12..10...3...17...6...21...21 A226644
.6 0...1...1...3...3...3...1...6...8..10...7...10...1....9...12 A226645
.7 0...0...1...1...2...7...3...2...3...5...2...13...8...10....9 n/a
.8 0...0...0...1...1...3...3...3...1...2...0....8...3....7...19 n/a
.9 0...0...1...1...0...3...2...5...3...2...0....6...2....4...10 n/a
10 0...0...0...1...1...2...0...4...4...3...0....4...1....4....8 n/a
Triangle (by antidiagonals):
  {3},
  {1, 10},
  {1, 3, 21},
  {0, 3, 8, 28},
  {0, 1, 3, 10, 36},
  {0, 1, 3, 6, 12, 57},
  ...
		

Crossrefs

Programs

  • Mathematica
    f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Table[f[n, m - n + 1], {m, 12}, {n, m, 1, -1}] // Flatten

A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A348625 Number of Egyptian fractions with squared denominators: number of solutions to the equation 1 = 1/x_1^2 + ... + 1/x_n^2 with 0 < x_1 <= ... <= x_n.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 4, 7, 47, 186, 1809, 27883
Offset: 1

Views

Author

Max Alekseyev, Oct 25 2021

Keywords

Comments

All denominators are bounded by A348626(n), i.e., 0 < x_1 <= ... <= x_n < A348626(n). Furthermore, for a fixed n, x_i <= sqrt(n+1-i)*(A348626(i)-1).

Crossrefs

A156871 Number of nondecreasing sequences of n positive integers with reciprocals adding up to an integer.

Original entry on oeis.org

1, 2, 5, 20, 170, 3650, 298132, 159632503
Offset: 1

Views

Author

Jens Voß, Feb 17 2009

Keywords

Examples

			For n = 3, the A156871(3) = 5 sequences are (1, 1, 1), (1, 2, 2), (2, 3, 6), (2, 4, 4) and (3, 3, 3) because 1/1 + 1/1 + 1/1 = 3, 1/1 + 1/2 + 1/2 = 2 and 1/2 + 1/3 + 1/6 = 1/2 + 1/4 + 1/4 = 1/3 + 1/3 + 1/3 = 1.
		

Crossrefs

Formula

a(n) = A156869(n, 1) + ... + A156869(n, n).

Extensions

a(7), a(8) from Max Alekseyev, Jul 27 2009
Previous Showing 11-20 of 55 results. Next