cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002966 Egyptian fractions: number of solutions of 1 = 1/x_1 + ... + 1/x_n where 0 < x_1 <= ... <= x_n.

Original entry on oeis.org

1, 1, 3, 14, 147, 3462, 294314, 159330691
Offset: 1

Views

Author

Keywords

Comments

All denominators in the expansion 1 = 1/x_1 + ... + 1/x_n are bounded by A000058(n-1), i.e., 0 < x_1 <= ... <= x_n < A000058(n-1). Furthermore, for a fixed n, x_i <= (n+1-i)*(A000058(i-1)-1). - Max Alekseyev, Oct 11 2012
From R. J. Mathar, May 06 2010: (Start)
This is the leading edge of the triangle A156869. This is also the row n=1 of an array T(n,m) which gives the number of ways to write 1/n as a sum over m (not necessarily distinct) unit fractions:
1, 1, 3, 14, 147, 3462, 294314, ...
1, 2, 10, 108, 2892, 270332, ...
1, 2, 21, 339, 17253, ...
1, 3, 28, 694, 51323, ...
...
T(.,2) = A018892. T(.,3) = A004194. T(.,4) = A020327, T(.,5) = A020328. T(2,6) is computed by D. S. McNeil, who conjectures that the 2nd row is A003167. (End)
If on the other hand, all x_k must be unique, see A006585. - Robert G. Wilson v, Jul 17 2013

Examples

			For n=3 the 3 solutions are {2,3,6}, {2,4,4}, {3,3,3}.
For n=4 the solutions are: {2,3,7,42}, {2,3,8,24}, {2,3,9,18}, {2,3,10,15}, {2,3,12,12}, {2,4,5,20}, {2,4,6,12}, {2,4,8,8}, {2,5,5,10}, {2,6,6,6}, {3,3,4,12}, {3,3,6,6}, {3,4,4,6}, {4,4,4,4}. [Neven Juric, May 14 2008]
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D11.
  • D. Singmaster, The number of representations of one as a sum of unit fractions, unpublished manuscript, 1972.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    a(n,rem=1,mn=1)=if(n==1,return(numerator(rem)==1)); sum(k=max(1\rem+1,mn), n\rem, a(n-1,rem-1/k,k)) \\ Charles R Greathouse IV, Jan 04 2015

Formula

a(n) <= binomial(A007018(n), n-1). - Charles R Greathouse IV, Jul 29 2024

Extensions

a(7) from Jud McCranie, Nov 15 1999. Confirmed by Marc Paulhus.
a(8) from John Dethridge (jcd(AT)ms.unimelb.edu.au) and Jacques Le Normand (jacqueslen(AT)sympatico.ca), Jan 06 2004

A348626 Greedy Egyptian fraction representation of 1 with square denominators.

Original entry on oeis.org

2, 2, 2, 3, 3, 7, 12, 49, 340, 6153, 362275, 234314697, 4303312007019, 8064823505928103487, 21034270897045389505182033301, 13184627067084215135862894820778146400791573, 36011454158212923548860166370685543204871921069986403871775848271, 6820216143160044256325325882329406136711110111012515344838677137010956148075846307036940303634819
Offset: 1

Views

Author

Max Alekseyev, Oct 25 2021

Keywords

Comments

Greedy representation 1 = 1/a(1)^2 + 1/a(2)^2 + ... constructed in a similar way to Sylvester's sequence (A000058). Let s(n) = Sum_{i=1..n} 1/a(i)^2, and let g(n) = 1 - s(n). Each a(n) is taken be the smallest positive integer satisfying s(n) < 1. [Revised by N. J. A. Sloane, Apr 20 2025]
Comment from David desJardins, Apr 20 2025 (Start)
We know that s(n) < 1 and s(n)-1/a(n)^2+1/(a(n)-1)^2 > 1. Then, arguing heuristically, the gap g(n) = 1-s(n) \approx 1/a(n+1)^2. This implies
0 < g(n) < 1/(a(n)-1)^2 - 1/a(n)^2 \approx 2/a(n)^3.
So a(n)^3/a(n+1)^2 should be roughly uniform on [0,2].
Let L(n) = ln(a(n)). Then 3*L(n) - 2*L(n+1) \approx ln(2) - e(n+1), where e(i) has an exponential distribution.
So L(n+1) \approx (3/2)*L(n) + (1/2)*(e(n+1)-ln(2)).
This gives us the conjecture that L(n) = C * (3/2)^n * (1+o(1)), as n -> oo.
The plot of L(n)*(2/3)^n (see link) shows that the conjecture is plausible, with C \approx 0.15113.
(End)

Crossrefs

Programs

  • PARI
    s=1; for(n=1,20, t=sqrtint(floor(1/s))+1; s-=1/t^2; print1(t,", "));
    
  • Python
    from math import isqrt
    from fractions import Fraction
    def A348626List():
        s = Fraction(1, 1)
        while True:
            t = isqrt(1 // s) + 1
            yield t
            s -= Fraction(1, t * t)
    a = A348626List()
    print([next(a) for  in range(18)])  # _Peter Luschny, Oct 26 2021

A369470 a(n) = number of integer solutions to 1 <= x1 <= x2 <= ... <= xn to 1/x1 + ... + 1/xn = (1 - 1/x1) * ... * (1 - 1/xn).

Original entry on oeis.org

1, 1, 2, 35, 455, 13624, 1176579
Offset: 1

Views

Author

Max Alekseyev, Jan 23 2024

Keywords

Comments

For any n, a(n) >= A369469(n) >= 1 (see A369607).

Crossrefs

A378270 Number of partitions of 1 into {1/1^2, 1/2^2, 1/3^2, ..., 1/n^2}.

Original entry on oeis.org

1, 2, 3, 7, 8, 58, 59, 259, 664, 3427, 3428, 73351, 73352, 298785, 7060868, 43070304, 43070305, 901194373, 901194374, 32808600352, 1204438945226, 2459587779124, 2459587779125, 96010353352980
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2024

Keywords

Comments

From David A. Corneth, Nov 24 2024: (Start)
Primes n/2 < p <= n occur in exactly one solution namely (p^2) * (1/p^2).
Proof: If the numerator k of k/p^2 is less than p^2 then p divides the denominator of the sum of the Egyptian fractions as p divides no other number <= n. But the goal is have sum 1 i.e. denominator 1 so p cannot be a divisor of the denominator. Consequently this can be reduced to "Number of partitions of 1 into {1/1^2, 1/2^2, ..., 1/(n/2)^2, ..., 1/n^2}" plus number of primes n/2 < p <= n. The denominators for the first part can be cleared turning this into a partitioning problem of positive integers. (End)

Examples

			a(4) = 7 because we have 16 * (1/16) = 12 * (1/16) + 1/4 = 8 * (1/16) + 2 * (1/4) = 4 * (1/16) + 3 * (1/4) = 9 * (1/9) = 4 * (1/4) = 1.
From _David A. Corneth_, Nov 24 2024: (Start)
To find a(12) we can rewrite the problem as "Number of partitions of 1 into {1/1^2, 1/2^2, 1/3^2, 1/4^2, 1/5^2, 1/6^2, 1/8^2, 1/9^2, 1/10^2, 1/12^2} + |{7, 11}|". The lcm of (1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 8^2, 9^2, 10^2, 12^2) is 129600. So this comes a partition problem of (number of partitions of 129600 into parts 129600, 32400, 14400, 8100, 5184, 3600, 2025, 1600, 1296, 900) + |{7, 11}|. (End)
		

Crossrefs

Formula

a(p) = a(p-1) + 1 for prime p. - David A. Corneth, Nov 22 2024

Extensions

a(12)-a(21) from David A. Corneth, Nov 22 2024
a(22)-a(24) from Jinyuan Wang, Dec 11 2024

A369607 Greedy solution a(1) < a(2) < ... to 1/a(1) + 1/a(2) + ... = (1 - 1/a(1)) * (1 - 1/a(2)) * ....

Original entry on oeis.org

3, 6, 29, 803, 643727, 414383582243, 171713753231982206218247, 29485613049014079571725771288849499850026859243, 869401376876189366008603664962520703088459987798626788985159595026678611496977754082506135887
Offset: 1

Views

Author

Max Alekseyev, Jan 27 2024

Keywords

Comments

For any n, (x1, x2, ..., xn) = (a(1), a(2), ..., a(n-1), a(n)-1) forms a solution to 1/x1 + ... + 1/xn = (1 - 1/x1) * ... * (1 - 1/xn), proving that A369470(n) >= A369469(n) >= 1.

Crossrefs

Formula

a(n+2) = a(n+1)^2 + (a(n) - 2)*a(n+1) - a(n)^3 + 2*a(n)^2 - 2*a(n) + 2.

A379528 Number of compositions (ordered partitions) of 1 into {1/1^2, 1/2^2, 1/3^2, ..., 1/n^2}.

Original entry on oeis.org

1, 2, 3, 97, 98, 40917543, 40917544, 2901109178066823, 81221415992592163051371926, 373220766236315864054296758124337507430, 373220766236315864054296758124337507431
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 24 2024

Keywords

Crossrefs

Formula

a(p) = a(p-1) + 1 for p prime. - Chai Wah Wu, Dec 27 2024

Extensions

a(6)-a(11) from Alois P. Heinz, Dec 26 2024
Showing 1-6 of 6 results.