cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 86 results. Next

A139058 Numbers n such that (5+n!)/5 is prime.

Original entry on oeis.org

7, 9, 11, 14, 19, 23, 45, 121, 131, 194, 735, 751, 1316, 1372, 2084, 2562, 5678, 5758, 12533, 24222
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (5+n!)/5 see A139059.
a(21) > 25000. - Robert Price, Nov 20 2016

Crossrefs

Cf. A139059.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

  • Magma
    [ n: n in [5..734] | IsPrime((Factorial(n)+5) div 5) ];
    
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 5)/5], AppendTo[a, n]], {n, 1, 751}]; a
  • PARI
    A139058(n) = local(k=(n!+5)\5); if(isprime(k), k, 0);
    for(n=5, 800, if(A139058(n)>0, print1(n, ", ")))

Extensions

More terms from Serge Batalov, Feb 18 2015
a(19)-a(20) from Robert Price, Nov 20 2016

A002253 Numbers k such that 3*2^k + 1 is prime.

Original entry on oeis.org

1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294, 42665, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 362765, 382449, 709968, 801978, 916773, 1832496, 2145353
Offset: 1

Views

Author

Keywords

Comments

From Zak Seidov, Mar 08 2009: (Start)
List is complete up to 3941000 according to the list of RB & WK.
So far there are only 4 primes: 2, 5, 41, 353. (End)

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 614.
  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A039687 for the actual primes.

Programs

  • PARI
    is(n)=isprime(3*2^n+1) \\ Charles R Greathouse IV, Feb 17 2017
    
  • PARI
    A2253=[1]; A002253(n)=for(k=#A2253, n-1, my(m=A2253[k]); until(ispseudoprime(3<M. F. Hasler, Mar 03 2023

Formula

a(n) = log_2((A039687(n)-1)/3) = floor(log_2(A039687(n)/3)). - M. F. Hasler, Mar 03 2023

Extensions

Corrected and extended according to the list of Ray Ballinger and Wilfrid Keller by Zak Seidov, Mar 08 2009
Edited by N. J. A. Sloane, Mar 13 2009
a(47) and a(48) from the Ballinger & Keller web page, Joerg Arndt, Apr 07 2013
a(49) from https://t5k.org/primes/page.php?id=116922, Fabrice Le Foulher, Mar 09 2014
Terms moved from Data to b-file (Links), and additional term appended to b-file, by Jeppe Stig Nielsen, Oct 30 2020

A139061 Numbers n for which (4+n!)/4 is prime.

Original entry on oeis.org

4, 5, 6, 13, 21, 25, 32, 40, 61, 97, 147, 324, 325, 348, 369, 1290, 1342, 3167, 6612, 8176, 10990
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (4+k!)/4, see A139060.
a(22) > 25000. - Robert Price, Jan 10 2017

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 4)/4], AppendTo[a, n]], {n, 1, 500}]; a
    Select[Range[500],PrimeQ[(4+#!)/4]&]  (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    for(n=4,1e3,if(ispseudoprime(n!/4+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(19) - a(21) from Robert Price, Jan 10 2017

A139063 Numbers k for which (6+k!)/6 is prime.

Original entry on oeis.org

3, 4, 10, 11, 13, 14, 17, 21, 82, 115, 165, 167, 173, 174, 208, 225, 380, 655, 1187, 2000, 2568, 3010, 4542, 8750, 12257, 12601, 24083
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (6+k!)/6, see A139062.
a(28) > 25000. - Robert Price, Nov 20 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 6)/6], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    for(k=3,1e3,if(ispseudoprime(k!/6+1),print1(k", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

a(18) and a(19) from Robert Israel, May 19 2014
More terms from Serge Batalov, Feb 18 2015
a(24)-a(27) from Robert Price, Nov 20 2016

A139065 Numbers k for which (7+k!)/7 is prime.

Original entry on oeis.org

11, 15, 16, 25, 35, 59, 64, 68, 82, 121, 149, 238, 584, 912, 3349, 4111, 4324, 15314, 19944, 20658, 22740, 23364
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (7+k!)/7, see A139064.
a(23) > 25000. - Robert Price, Nov 20 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 7)/7], AppendTo[a, n]], {n, 1, 500}]; a
    Select[Range[500],PrimeQ[(7+#!)/7]&] (* Harvey P. Dale, Sep 01 2014 *)
  • PARI
    for(k=7,1e3,if(ispseudoprime(k!/7+1),print1(k", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(18)-a(22) from Robert Price, Nov 20 2016

A033933 Least nonnegative m such that n! - m is prime.

Original entry on oeis.org

0, 1, 1, 7, 1, 1, 31, 13, 11, 13, 1, 23, 1, 47, 53, 59, 41, 101, 31, 31, 73, 89, 73, 149, 37, 43, 101, 31, 1, 61, 1, 1, 193, 113, 127, 97, 1, 73, 83, 131, 79, 109, 109, 53, 89, 79, 103, 59, 97, 179, 67, 59, 127, 61, 461, 277, 109, 137, 139, 71, 71, 101, 359, 127, 317, 191, 251, 103, 97, 751, 163, 373, 199, 167, 157, 491, 317
Offset: 2

Views

Author

Keywords

Comments

Conjecture: for n >= 3, a(n) is 1 or a prime. - Amarnath Murthy, Mar 19 2002
a(n) is not divisible by any prime <= n. If a(n) > 1 is composite, then a(n) > n^2. There are no entries up to n = 2000 with a(n) > n^2, and there may be none. - Robert Israel, Jul 20 2014

Crossrefs

Programs

  • Maple
    0, seq(n! - prevprime(n!), n=3..100); # Robert Israel, Jul 15 2014
  • Mathematica
    p[n_] := Module[{nf = n!}, nf - NextPrime[nf, -1]]; Join[{0}, Table[p[n], {n, 3, 70}]] (* Harvey P. Dale, Jul 07 2012 *)
  • PARI
    for(n=2,70, k=0; while(!isprime(n!-k), k++); print1(k,","))
    
  • PARI
    vector(66, t, my(n=t+1, f=n!); f-precprime(f)) \\ Joerg Arndt, Jul 19 2014
    
  • Sage
    def A033933(n):
        if n < 3: return 0
        f = factorial(n)
        return f - previous_prime(f)
    [A033933(n) for n in (2..78)] # Peter Luschny, Jul 20 2014

Extensions

More terms from Jud McCranie
a(21) onwards from Wouter Meeussen
Corrected by Rick L. Shepherd, Nov 06 2002

A139071 Numbers k for which (10+k!)/10 is prime.

Original entry on oeis.org

5, 6, 11, 12, 15, 23, 26, 37, 45, 108, 112, 129, 137, 148, 172, 248, 760, 807, 975, 1398, 5231, 8765, 24182
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

Primes of the form (10+k!)/10 see A139070.
a(24) > 25000. - Robert Price, Nov 08 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 10)/10], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    for(k=5,1e3,if(ispseudoprime(k!/10+1),print1(k", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(22)-a(23) from Robert Price, Nov 08 2016

A082671 Numbers n such that (n!-2)/2 is a prime.

Original entry on oeis.org

3, 4, 5, 6, 9, 31, 41, 373, 589, 812, 989, 1115, 1488, 1864, 1918, 4412, 4686, 5821, 13830
Offset: 1

Views

Author

Cino Hilliard, May 18 2003

Keywords

Examples

			(4!-2)/2 = 11 is a prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..600]| IsPrime((Factorial(n)-2) div 2)]; // Vincenzo Librandi, Feb 18 2015
  • Mathematica
    Select[Range[0, 14000], PrimeQ[(#! - 2) / 2] &] (* Vincenzo Librandi, Feb 18 2015 *)
  • PARI
    xfactpk(n,k=2) = { for(x=2,n, y = (x!-k)/k; if(isprime(y),print1(x", ")) ) }
    

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
Edited by T. D. Noe, Oct 30 2008

A139199 Numbers k such that (k!-4)/4 is prime.

Original entry on oeis.org

4, 5, 6, 7, 8, 10, 15, 18, 23, 157, 165, 183, 184, 362, 611, 908, 2940, 6875, 9446, 16041
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

Numbers k such that (k!-m)/m is prime:
for m=1 see A002982
for m=2 prime or pseudoprime see A082671
for m=3 see A139056
for m=4 see A139199
for m=5 see A139200
for m=6 see A139201
for m=7 see A139202
for m=8 see A139203
for m=9 see A139204
for m=10 see A139205
a(17) > 2000 - Ray G. Opao, Sep 30 2008
a(21) > 25000 - Robert Price, Sep 25 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 4)/4], Print[a]; AppendTo[a, n]], {n, 1, 184}]; a (*Artur Jasinski*)
  • PARI
    is(n)=n>3 && isprime(n!/4-1) \\ Charles R Greathouse IV, Apr 29 2015

Extensions

a(15)-a(16) from Ray G. Opao, Sep 30 2008
a(17) from Serge Batalov, Feb 18 2015
a(18)-a(20) from Robert Price, Sep 25 2016

A139205 Numbers k such that (k!-10)/10 is prime.

Original entry on oeis.org

5, 6, 7, 11, 13, 17, 28, 81, 87, 433, 640, 647, 798, 1026, 1216, 1277, 3825, 6684
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(19) > 25000. - Robert Price, Dec 23 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 10)/10], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (*Artur Jasinski*)
    Select[Range[700],PrimeQ[(#!-10)/10]&] (* Harvey P. Dale, Feb 15 2015 *)

Extensions

One additional term (a(12)) from Harvey P. Dale, Feb 15 2015
More terms from Serge Batalov, Feb 18 2015
a(18) from Robert Price, Dec 23 2016
Previous Showing 11-20 of 86 results. Next