cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 86 results. Next

A062701 Index of factorial primes of the form k! + 1.

Original entry on oeis.org

1, 2, 4, 2428957
Offset: 1

Views

Author

Labos Elemer, Jul 11 2001

Keywords

Examples

			The exact subscript of the 5th prime [1 + 27! = 10888869450418352160768000001] is not yet available.
		

Crossrefs

Formula

a(n) = PrimePi(A002981(n)!+1).

Extensions

Offset 1 from Michel Marcus, Aug 29 2019

A084750 Numbers k such that k! - p is a prime, where p is the smallest prime > k.

Original entry on oeis.org

4, 5, 10, 11, 12, 14, 29, 53, 81, 90, 116, 236, 323, 346, 1172, 2957, 8400, 14906
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 16 2003

Keywords

Comments

Numbers k such that k! - NextPrime(k) is prime.
If k != 3, there does not exist a prime p and a number k such that k! - NextPrime(k) < p < k! - 1. - Farideh Firoozbakht, Feb 26 2004

Examples

			10 is in the sequence because 10! = 3628800, NextPrime(10) = 11 and 3628800 - 11 = 3628789 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[k!-NextPrime[k]], Print[k]], {k, 0, 1425}] (* Farideh Firoozbakht, Feb 26 2004 *)

Extensions

More terms from Farideh Firoozbakht, Feb 26 2004
a(16) from Ryan Propper, Jul 09 2005
Edited by N. J. A. Sloane at the suggestion of Ryan Propper, Jan 26 2008
a(17) from Michael S. Branicky, Jun 21 2023
a(18) from Michael S. Branicky, Apr 28 2025

A139200 Numbers k such that (k!-5)/5 is prime.

Original entry on oeis.org

5, 11, 12, 16, 36, 41, 42, 47, 127, 136, 356, 829, 1863, 2065, 2702, 4509, 7498
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(16) > 3000. - Ray G. Opao, Oct 05 2008
a(18) > 25000. - Robert Price, Nov 20 2016

Crossrefs

Programs

  • Magma
    [n: n in [5..500] | IsPrime((Factorial(n)-5) div 5)]; // Vincenzo Librandi, Nov 21 2016
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 5)/5], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (* Artur Jasinski *)

Extensions

a(13)-a(15) from Ray G. Opao, Oct 05 2008
a(16) from Serge Batalov, Feb 18 2015
a(17) from Robert Price, Nov 20 2016

A139201 Numbers k such that (k!-6)/6 is prime.

Original entry on oeis.org

4, 5, 7, 8, 11, 14, 16, 17, 18, 20, 43, 50, 55, 59, 171, 461, 859, 2830, 3818, 5421, 5593, 10118, 10880, 24350
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(25) > 25000. - Robert Price, Dec 15 2016

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime((1/6)*factorial(n)-1)=true then n else end if end proc: seq(a(n),n=4..500); # Emeric Deutsch, Apr 29 2008
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 6)/6], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (* Artur Jasinski *)

Extensions

2 more terms from Emeric Deutsch, Apr 29 2008
More terms from Serge Batalov, Feb 18 2015
a(22)-a(24) from Robert Price, Dec 15 2016

A139202 Numbers k such that (k!-7)/7 is prime.

Original entry on oeis.org

7, 9, 20, 23, 46, 54, 57, 71, 85, 387, 396, 606, 1121, 2484, 6786, 9321, 11881, 18372
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(19) > 25000. - Robert Price, Nov 05 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 7)/7], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (*Artur Jasinski*)

Extensions

More terms from Alexis Olson (AlexisOlson(AT)gmail.com), Nov 14 2008
a(13)-a(14) PRPs from Sean A. Irvine, Aug 05 2010
a(15)-a(18) PRP from Robert Price, Nov 05 2016

A139203 Numbers k such that (k!-8)/8 is prime.

Original entry on oeis.org

4, 6, 8, 10, 11, 16, 19, 47, 66, 183, 376, 507, 1081, 1204, 12111, 23181
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(17) > 25000. - Robert Price, Oct 08 2016

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime((1/8)*factorial(n)-1)=true then n else end if end proc: seq(a(n),n=4..550); # Emeric Deutsch, May 07 2008
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 8)/8], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a

Extensions

2 more terms from Emeric Deutsch, May 07 2008
More terms from Serge Batalov, Feb 18 2015
a(15)-a(16) from Robert Price, Oct 08 2016

A139204 Numbers k such that (k!-9)/9 is prime.

Original entry on oeis.org

6, 15, 17, 18, 21, 27, 29, 30, 37, 47, 50, 64, 125, 251, 602, 611, 1184, 1468, 5570, 10679, 15798, 21237
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(20) > 10000. The PFGW program has been used to certify all the terms up to a(19), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Mar 28 2014
a(23) > 25000. - Robert Price, Mar 29 2017

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 9)/9], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a
  • PARI
    for(n=1,1000,if(floor(n!/9-1)==n!/9-1,if(ispseudoprime(n!/9-1),print(n)))) \\ Derek Orr, Mar 28 2014

Extensions

a(14)-a(16) from Derek Orr, Mar 28 2014
a(17)-a(19) from Giovanni Resta, Mar 28 2014
a(20)-a(22) from Robert Price, Mar 29 2017

A163078 Numbers k such that k$ - 1 is prime. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

3, 4, 5, 6, 7, 10, 13, 15, 18, 30, 35, 39, 41, 47, 49, 58, 83, 86, 102, 111, 137, 151, 195, 205, 226, 229, 317, 319, 321, 368, 389, 426, 444, 477, 534, 558, 567, 738, 804, 882, 1063, 1173, 1199, 1206, 1315, 1624, 1678, 1804, 2371, 2507, 2541, 2844, 3084, 3291
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Examples

			4$ - 1 = 6 - 1 = 5 is prime, so 4 is in the sequence.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(x -> isprime(A056040(x)-1),[$0..n]) end:
  • Mathematica
    fQ[n_] := PrimeQ[ -1 + 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]]; Select[ Range@ 3647, fQ] (* Robert G. Wilson v, Aug 09 2010 *)
  • PARI
    is(k) = ispseudoprime(k!/(k\2)!^2-1); \\ Jinyuan Wang, Mar 22 2020

Extensions

a(42)-a(54) from Robert G. Wilson v, Aug 09 2010

A335459 Number of permutations of the prime indices of n! with at least one non-singleton run.

Original entry on oeis.org

0, 0, 0, 0, 4, 18, 102, 786, 3960, 51450, 675570, 10804710, 139674024, 2793377664, 58662908640, 1798893694080, 26985313555200, 782574083010720, 25992638958686400, 857757034323189000, 30021498596590300800, 1563341714743040232000, 64179292280096037844800, 2631350957341279888915200
Offset: 0

Views

Author

Gus Wiseman, Jul 03 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(4) = 4 and a(5) = 18 permutations:
  (1,1,1,2)  (1,1,1,2,3)
  (1,1,2,1)  (1,1,1,3,2)
  (1,2,1,1)  (1,1,2,1,3)
  (2,1,1,1)  (1,1,2,3,1)
             (1,1,3,1,2)
             (1,1,3,2,1)
             (1,2,1,1,3)
             (1,2,3,1,1)
             (1,3,1,1,2)
             (1,3,2,1,1)
             (2,1,1,1,3)
             (2,1,1,3,1)
             (2,1,3,1,1)
             (2,3,1,1,1)
             (3,1,1,1,2)
             (3,1,1,2,1)
             (3,1,2,1,1)
             (3,2,1,1,1)
		

Crossrefs

The anti-run version is A335407.
Anti-runs are ranked by A333489.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Permutations of prime indices are A008480.
Permutations of prime indices of n! are A325617.
Anti-run permutations of prime indices are A335452.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n!]],MatchQ[#,{_,x_,x_,_}]&]],{n,0,10}]
  • PARI
    \\ See A335452 for count.
    a(n)={my(sig=factor(n!)[, 2]); vecsum(sig)!/vecprod([k! | k<-sig]) - count(sig)} \\ Andrew Howroyd, Apr 17 2021

Formula

A008480(n!) = a(n) + A335407(n).

Extensions

a(11)-a(13) from Vaclav Kotesovec, Jul 07 2020
Terms a(14) and beyond from Andrew Howroyd, Apr 17 2021

A093623 Smallest k>0 such that n!/k!-1 is prime.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 6, 3, 1, 8, 1, 4, 3, 3, 3, 5, 3, 15, 13, 13, 10, 8, 4, 5, 12, 14, 1, 2, 1, 1, 5, 13, 11, 11, 1, 25, 4, 2, 32, 3, 4, 15, 9, 10, 34, 16, 3, 5, 23, 13, 30, 3, 13, 7, 34, 3, 21, 22, 9, 10, 15, 7, 26, 51, 42, 18, 6, 6, 31, 23, 31, 51, 12, 20, 8, 24, 50, 40, 4, 30, 49, 36, 4, 23
Offset: 3

Views

Author

Hugo Pfoertner, Apr 06 2004

Keywords

Comments

a(A002982(n)) = 1. The existence of a solution has been checked up to n=500.
The results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 14 2019

Examples

			a(10) = 6 because 10!/6! - 1 = 5039 is prime, whereas 10!/k! - 1 is composite for k = 1..5.
		

Crossrefs

Cf. A093622 largest prime of the form n!/k!-1, A002982 n!-1 is prime, A093621 smallest k>0 such that n!/k!+1 is prime.

Extensions

a(53) corrected by Gionata Neri, Jul 18 2017
Previous Showing 51-60 of 86 results. Next