cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 355 results. Next

A324320 Terms of A324315 (squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p) that are also octagonal numbers (A000567) with index equal to their largest prime factor.

Original entry on oeis.org

1045, 2465, 2821, 15841, 20501, 34133, 51221, 68101, 89441, 116033, 118405, 162401, 170885, 216545, 300833, 364705, 439301, 472033, 530881, 642181, 687365, 746005, 970145, 976981, 997633, 1104133, 1148245, 1193221, 1231361, 1239061, 1398101, 1654661, 1971541
Offset: 1

Views

Author

Keywords

Comments

2465 is also a Carmichael number (A002997).
2821 is also a primary Carmichael number (A324316).
See the section on polygonal numbers in Kellner and Sondow 2019.
Subsequence of the special polygonal numbers A324973. - Jonathan Sondow, Mar 27 2019

Examples

			A324315(4) = 1045 = 5 * 11 * 19 = 19 * (3 * 19 - 2) = A000567(19), so 1045 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    ON[n_] := n(3n - 2);
    TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &];
    Select[ON@ Prime[Range[100]], TestS[#] &]

Extensions

More terms from Amiram Eldar, Dec 05 2020

A083737 Pseudoprimes to bases 2, 3 and 5.

Original entry on oeis.org

1729, 2821, 6601, 8911, 15841, 29341, 41041, 46657, 52633, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 294409, 314821, 334153, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 658801, 670033, 721801, 748657
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Comments

a(n) = n-th positive integer k(>1) such that 2^(k-1) == 1 (mod k), 3^(k-1) == 1 (mod k) and 5^(k-1) == 1 (mod k)
See A153580 for numbers k > 1 such that 2^k-2, 3^k-3 and 5^k-5 are all divisible by k but k is not a Carmichael number (A002997).
Note that a(1)=1729 is the Hardy-Ramanujan number. - Omar E. Pol, Jan 18 2009

Examples

			a(1)=1729 since it is the first number such that 2^(k-1) == 1 (mod k), 3^(k-1) == 1 (mod k) and 5^(k-1) == 1 (mod k).
		

Crossrefs

Proper subset of A052155. Superset of A230722. Cf. A153580, A002997, A001235, A011541.

Programs

  • Mathematica
    Select[ Range[838200], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, 1 - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 & ]
  • PARI
    is(n)=!isprime(n)&&Mod(2,n)^(n-1)==1&&Mod(3,n)^(n-1)==1&&Mod(5,n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012

Extensions

Edited by Robert G. Wilson v, May 06 2003
Edited by N. J. A. Sloane, Jan 14 2009

A132195 Number of three-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

1, 7, 12, 23, 47, 84, 172, 335, 590, 1000, 1858, 3284, 6083, 10816, 19539, 35586, 65309, 120625, 224763, 420658, 790885, 1494738
Offset: 3

Views

Author

Jonathan Vos Post, Nov 19 2007

Keywords

Comments

a(n) = C_3(n) in Table 1, p. 34 of Chick (2007-2008) = card{c such that c is in A002997 INTERSECTION A014612 and c <= 10^n}.

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

A247074 a(n) = phi(n)/(Product_{primes p dividing n } gcd(p - 1, n - 1)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 3, 4, 1, 4, 1, 6, 2, 8, 1, 6, 1, 8, 3, 10, 1, 8, 5, 12, 9, 4, 1, 8, 1, 16, 5, 16, 6, 12, 1, 18, 6, 16, 1, 12, 1, 20, 3, 22, 1, 16, 7, 20, 8, 8, 1, 18, 10, 24, 9, 28, 1, 16, 1, 30, 9, 32, 3, 4, 1, 32, 11, 8, 1, 24, 1, 36, 10, 12, 15, 24, 1, 32, 27, 40, 1, 24, 4, 42, 14, 40, 1, 24, 2, 44, 15, 46
Offset: 1

Views

Author

Eric Chen, Nov 16 2014

Keywords

Comments

a(n) = A000010(n)/A063994(n). - Eric Chen, Nov 29 2014
Does every natural number appear in this sequence? If so, do they appear infinitely many times? - Eric Chen, Nov 26 2014
A063994(n) must be a factor of EulerPhi(n). - Eric Chen, Nov 26 2014
Number n is (Fermat) pseudoprimes (or prime) to one in a(n) of its coprime bases. That is, b^(n-1) = 1 (mod n) for one in a(n) of numbers b coprime to n. - Eric Chen, Nov 26 2014
a(n) = 1 if and only if n is 1, prime (A000040), or Carmichael number (A002997). - Eric Chen, Nov 26 2014
a(A191311(n)) = 2. - Eric Chen, Nov 26 2014
a(p^n) = p^(n-1), where p is a prime. - Eric Chen, Nov 26 2014
a(A209211(n)) = EulerPhi(A209211(n)), because A063994(A209211(n)) = 1. - Eric Chen, Nov 26 2014

Examples

			EulerPhi(15) = 8, and that 15 is a Fermat pseudoprime in base 1, 4, 11, and 14, the total is 4 bases, so a(15) = 8/4 = 2.
		

Crossrefs

Programs

  • Mathematica
    a063994[n_] := Times @@ GCD[n - 1, First /@ FactorInteger@ n - 1]; a063994[1] = 1; a247074[n_] := EulerPhi[n]/a063994[n]; Array[a247074, 150]
  • PARI
    a(n)=my(f=factor(n));eulerphi(f)/prod(i=1,#f~,gcd(f[i,1]-1,n-1)) \\ Charles R Greathouse IV, Nov 17 2014

Formula

A003557(n) <= a(n) <= n, and a(n) is a multiple of A003557(n). - Charles R Greathouse IV, Nov 17 2014

A299710 Number of ten-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

23, 340, 3058, 20738, 114232, 547528, 2347828
Offset: 16

Views

Author

Tim Johannes Ohrtmann, Feb 17 2018

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

Extensions

a(22) from Claude Goutier added by Amiram Eldar, Apr 19 2024

A324404 Squarefree integers m > 1 such that if prime p divides m, then s_p(m) >= p and s_p(m) == 2 (mod p-1), where s_p(m) is the sum of the base p digits of m.

Original entry on oeis.org

1122, 3458, 5642, 6734, 11102, 13202, 17390, 17822, 21170, 22610, 27962, 31682, 46002, 58682, 61778, 79730, 82082, 93314, 105266, 106262, 125490, 127946, 136202, 150722, 153254, 177122, 182002, 202202, 203870, 214370, 231842, 252434, 274298, 278462, 305102, 315282
Offset: 1

Views

Author

Keywords

Comments

For d >= 1 define S_d = (terms m in A324315 such that s_p(m) == d (mod p-1) if prime p divides m). Then S_1 is precisely the Carmichael numbers (A002997), S_2 is A324404, S_3 is A324405, and the union of all S_d for d >= 1 is A324315.
Subsequence of the 2-Knödel numbers (A050990). Generally, for d > 1 the terms of S_d that are greater than d form a subsequence of the d-Knödel numbers.
See Kellner and Sondow 2019.

Examples

			1122 = 2*3*11*17 is squarefree and equals 10001100010_2, 1112120_3, 930_11, and 3f0_17 in base p = 2, 3, 11, and 17. Then s_2(1122) = 1+1+1+1 = 4 >= 2, s_3(1122) = 1+1+1+2+1+2 = 8 >= 3, s_11(1122) = 9+3 = 12 >= 11, and s_17(1122) = 3+f = 3+15 = 18 >= 17. Also, s_2(1122) = 4 == 2 (mod 1), s_3(1122) = 8 == 2 (mod 2), s_11(1122) = 12 == 2 (mod 10), and s_17(1122) = 18 == 2 (mod 16), so 1122 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    TestSd[n_, d_] := (n > 1) && (d > 0) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # && Mod[SD[n, #] - d, # - 1] == 0 &];
    Select[Range[200000], TestSd[#, 2] &]

Extensions

More terms from Amiram Eldar, Dec 05 2020

A324405 Squarefree integers m > 1 such that if prime p divides m, then s_p(m) >= p and s_p(m) == 3 (mod p-1), where s_p(m) is the sum of the base p digits of m.

Original entry on oeis.org

3003, 3315, 5187, 7395, 8463, 14763, 19803, 26733, 31755, 47523, 50963, 58035, 62403, 88023, 105339, 106113, 123123, 139971, 152643, 157899, 166611, 178923, 183183, 191919
Offset: 1

Views

Author

Keywords

Comments

For d >= 1 define S_d = (terms m in A324315 such that s_p(m) == d (mod p-1) if prime p divides m). Then S_1 is precisely the Carmichael numbers (A002997), S_2 is A324404, S_3 is A324405, and the union of all S_d for d >= 1 is A324315.
Subsequence of the 3-Knödel numbers (A033553). Generally, for d > 1 the terms of S_d that are greater than d form a subsequence of the d-Knödel numbers.
See Kellner and Sondow 2019.

Examples

			3003 = 3*7*11*13 is squarefree and equals 11010020_3, 11520_7, 2290_11, and 14a0_13 in base p = 3, 7, 11, and 13. Then s_3(3003) = 1+1+1+2 = 5 >= 3, s_7(3003) = 1+1+5+2 = 9 >= 7, s_11(3003) = 2+2+9 = 13 >= 11, and s_13(3003) = 1+4+a = 1+4+10 = 15 >= 13. Also, s_3(3003) = 5 == 3 (mod 2), s_7(3003) = 9 == 3 (mod 6), s_11(3003) = 13 == 3 (mod 10), and s_13(3003) = 15 == 3 (mod 12), so 3003 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    TestSd[n_, d_] := (n > 1) && (d > 0) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # && Mod[SD[n, #] - d, # - 1] == 0 &];
    Select[Range[200000], TestSd[#, 3] &]

A339869 Carmichael numbers k for which A053575(k) [the odd part of phi] divides k-1.

Original entry on oeis.org

561, 1105, 2465, 6601, 8911, 10585, 46657, 62745, 162401, 410041, 449065, 5148001, 5632705, 6313681, 6840001, 7207201, 11119105, 11921001, 19683001, 21584305, 26719701, 41298985, 55462177, 64774081, 67371265, 79411201, 83966401, 87318001, 99861985, 100427041, 172290241, 189941761, 484662529, 790623289, 809883361
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2020

Keywords

Comments

Lehmer conjectured that the equation k * phi(n) = n - 1 (with k integer) has no solutions for any composite n (i.e., when k > 1). If this sequence has no common terms with A339818, then the conjecture certainly holds.

Crossrefs

Intersection of A002997 and A339880.
Complement of A340092 in A002997.
Cf. also A339818, A339878, A339909.

Programs

  • Mathematica
    carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; oddPart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := Divisible[n - 1, oddPart[EulerPhi[n]]]; Select[carmichaels, q] (* Amiram Eldar, Dec 26 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n, 2));
    A002322(n) = lcm(znstar(n)[2]);
    isA339869(n) = ((n>1)&&!isprime(n)&&(!((n-1)%A002322(n)))&&!((n-1)%A000265(eulerphi(n))));

A033181 Absolute Euler pseudoprimes: odd composite numbers n such that a^((n-1)/2) == +-1 (mod n) for every a coprime to n.

Original entry on oeis.org

1729, 2465, 15841, 41041, 46657, 75361, 162401, 172081, 399001, 449065, 488881, 530881, 656601, 670033, 838201, 997633, 1050985, 1615681, 1773289, 1857241, 2113921, 2433601, 2455921, 2704801, 3057601, 3224065, 3581761, 3664585, 3828001, 4463641, 4903921
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

These numbers n have the property that, for each prime divisor p, p-1 divides (n-1)/2. E.g., 2465 = 5*17*29; 1232/4 = 308; 1232/16 = 77; 1232/28 = 44. - Karsten Meyer, Nov 08 2005
All these numbers are Carmichael numbers (A002997). - Daniel Lignon, Sep 12 2015
These are odd composite numbers n such that b^((n-1)/2) == 1 (mod n) for every base b that is a quadratic residue modulo n and coprime to n. There are no odd composite numbers n such that b^((n-1)/2) == -1 (mod n) for every base b that is a quadratic non-residue modulo n and coprime to n. Note: the absolute Euler-Jacobi pseudoprimes do not exist. Theorem: if an absolute Euler pseudoprime n is a Proth number, then b^((n-1)/2) == 1 for every b coprime to n; by Proth's theorem. Such numbers are 1729, 8355841, 40280065, 53282340865, ...; for example, 1729 = 27*2^6 + 1 with 27 < 2^6. However, it seems that all absolute Euler pseudoprimes n satisfy the stronger congruence b^((n-1)/2) == 1 (mod n) for every b coprime to n, as evidenced by the modified Korselt's criterion (see the first comment). It should be noted that these are odd numbers n such that Carmichael's lambda(n) divides (n-1)/2. Also, these are odd numbers n > 1 coprime to Sum_{k=1..n-1} k^{(n-1)/2}. - Amiram Eldar and Thomas Ordowski, Apr 29 2019
Carmichael numbers k such that (p-1)|(k-1)/2 for each prime p|k. These are odd composite numbers k with half (the maximal possible fraction) of the numbers 1 <= b < k coprime to k that are bases in which k is an Euler-Jacobi pseudoprime, i.e. A329726((k-1)/2)/phi(k) = 1/2. - Amiram Eldar, Nov 20 2019
By Karsten Meyer's and Amiram Eldar's comment, this sequence is numbers k > 1 such that 2*psi(k) | (k-1), where psi = A002322. This means that if k is a term in this sequence, then we actually have a^((k-1)/2) == 1 (mod k) for every a coprime to k. - Jianing Song, Sep 03 2024

Crossrefs

Programs

  • Maple
    filter:=  proc(n)
      local q;
      if isprime(n) then return false fi;
      if 2 &^ (n-1) mod n <> 1 then return false fi;
      if not numtheory:-issqrfree(n) then return false fi;
      for q in numtheory:-factorset(n) do
        if (n-1)/2 mod (q-1) <> 0 then return false fi
      od:
      true;
    end proc:
    select(filter, [seq(i,i=3..10^7,2)]); # Robert Israel, Nov 24 2015
  • Mathematica
    absEulerpspQ[n_Integer?PrimeQ]:=False;
    absEulerpspQ[n_Integer?EvenQ]:=False;
    absEulerpspQ[n_Integer?OddQ]:=Module[{a=2},
    While[aDaniel Lignon, Sep 09 2015 *)
    aQ[n_] := Module[{f = FactorInteger[n], p},p=f[[;;,1]]; Length[p] > 1 && Max[f[[;;,2]]]==1 && AllTrue[p, Divisible[(n-1)/2, #-1] &]];Select[Range[3, 2*10^5], aQ] (* Amiram Eldar, Nov 20 2019 *)
  • Perl
    use ntheory ":all"; my $n; foroddcomposites { say if is_carmichael($) && vecall { (($n-1)>>1) % ($-1) == 0 } factor($n=$); } 1e6; # _Dana Jacobsen, Dec 27 2015

Formula

a(n) == 1 (mod 4). - Thomas Ordowski, May 02 2019

Extensions

"Absolute Euler pseudoprimes" added to name by Daniel Lignon, Sep 09 2015
Definition edited by Thomas Ordowski, Apr 29 2019

A074379 Carmichael numbers with exactly 4 prime factors.

Original entry on oeis.org

41041, 62745, 63973, 75361, 101101, 126217, 172081, 188461, 278545, 340561, 449065, 552721, 656601, 658801, 670033, 748657, 838201, 852841, 997633, 1033669, 1082809, 1569457, 1773289, 2100901, 2113921, 2433601, 2455921
Offset: 1

Views

Author

Jani Melik, Sep 24 2002

Keywords

Comments

Original name was: "Super-Carmichael numbers with exactly 4 factors", and a comment explained that the prefix "super" means that the Moebius function (A008683) equals mu(N) = +1 for these. But for squarefree numbers such as Carmichael numbers (A002997), this just means that they have an even number of prime factors, which is trivial if that number is 4.
In the literature there are other definitions of "super-Carmichael numbers", see the McIntosh and Meštrović references, so we prefer not to use this terminology at all.

Examples

			41041 = 7 * 11 * 13 * 41.
62745 = 3 * 5 * 47 * 89.
		

Crossrefs

Cf. A002997 (Carmichael numbers), A006931 (least Carmichael with n prime factors), A046386 (products of four distinct primes).

Programs

  • Mathematica
    p = Table[ Prime[i], {i, 1, 10}]; f[n_] := Union[ PowerMod[ Select[p, GCD[ #, n] == 1 & ], n - 1, n]]; Select[ Range[2500000], !PrimeQ[ # ] && OddQ[ # ] && Length[ FactorInteger[ # ]] == 4 && MoebiusMu[ # ] == 1 && f[ # ] == {1} & ]
  • PARI
    is_A074379(n)=is_A002997(n) && is_A046386(n) \\ M. F. Hasler, Mar 24 2022
    
  • PARI
    list(lim)=my(v=List()); forprime(p=3,sqrtnint(lim\=1,4), forprime(q=p+2,sqrtnint(lim\p,3), if(q%p==1, next); forprime(r=q+2,sqrtint(lim\p\q), if(r%p==1 || r%q==1, next); my(m=lcm([p-1,q-1,r-1]),pqr=p*q*r,t=Mod(1,m)/pqr,L=lim\pqr); fordiv(pqr-1,d, my(s=d+1); if(s>L, break); if(s==t && s>r && isprime(s), listput(v,pqr*s)))))); Set(v) \\ Charles R Greathouse IV, Apr 23 2022

Formula

Intersection of A002997 (Carmichael numbers) and A046386 (product of four distinct primes). - M. F. Hasler, Mar 24 2022

Extensions

Edited and extended by Robert G. Wilson v, Oct 03 2002
Edited by M. F. Hasler, Mar 24 2022
Previous Showing 71-80 of 355 results. Next