A350487
Triangle read by rows: T(n,k) is the number of acyclic digraphs on n labeled nodes with k arcs and a global source, n >= 1, k = 0..n*(n-1)/2.
Original entry on oeis.org
1, 0, 2, 0, 0, 9, 6, 0, 0, 0, 64, 132, 96, 24, 0, 0, 0, 0, 625, 2640, 4850, 4900, 2850, 900, 120, 0, 0, 0, 0, 0, 7776, 55800, 186480, 379170, 516660, 491040, 328680, 152640, 46980, 8640, 720, 0, 0, 0, 0, 0, 0, 117649, 1286670, 6756120, 22466010
Offset: 1
Triangle begins:
[1] 1;
[2] 0, 2;
[3] 0, 0, 9, 6;
[4] 0, 0, 0, 64, 132, 96, 24;
[5] 0, 0, 0, 0, 625, 2640, 4850, 4900, 2850, 900, 120;
...
-
T(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1)*binomial(n,k)*((1+'y)^(n-k)-1)^k*a[n-k])); [Vecrev(p) | p <- a]}
{ my(A=T(6)); for(n=1, #A, print(A[n])) }
A361718
Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 15, 9, 1;
0, 316, 198, 28, 1;
0, 16885, 10710, 1610, 75, 1;
...
Cf.
A000169,
A059201,
A082402,
A088957,
A133686,
A334282,
A350415,
A367904,
A367908,
A368600,
A368601.
-
nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]
A060335
Number of n-node labeled acyclic digraphs with 3 out-points.
Original entry on oeis.org
1, 28, 1610, 211820, 64144675, 44218682312, 68501035223124, 235728863806525320, 1784437537982029455525, 29470895991194487015464740, 1054563682428338672254476697886, 81276604641664521211218527866093204
Offset: 3
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
A060337
Number of labeled acyclic digraphs with n nodes containing exactly n-2 points of in-degree zero.
Original entry on oeis.org
15, 198, 1610, 10575, 61845, 336924, 1751076, 8801325, 43141175, 207347778, 980828238, 4578689115, 21135851625, 96628899960, 438068838536, 1971349880985, 8813183238315, 39169902510270, 173172640973010
Offset: 3
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- Andrew Howroyd, Table of n, a(n) for n = 3..500
- Index entries for linear recurrences with constant coefficients, signature (21,-189,955,-2982,5964,-7640,6048,-2688,512).
-
LinearRecurrence[{21,-189,955,-2982,5964,-7640,6048,-2688,512},{15,198,1610,10575,61845,336924,1751076,8801325,43141175},20] (* Harvey P. Dale, Mar 23 2022 *)
-
\\ requires A058876.
my(T=A058876(25)); vector(#T-2, n, T[n+2][n]) \\ Andrew Howroyd, Dec 27 2021
A368602
Triangle read by rows where T(n,k) is the number of labeled acyclic digraphs on {1..n} with sinks {1..k}.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 79, 33, 7, 1, 0, 3377, 1071, 161, 15, 1, 0, 362431, 92289, 10591, 705, 31, 1, 0, 93473345, 19856703, 1832705, 93375, 2945, 63, 1, 0, 56272471039, 10249747713, 789619327, 32382465, 782719, 12033, 127, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 5 3 1
0 79 33 7 1
0 3377 1071 161 15 1
...
Row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
For any choice of k sinks we get
A361718.
A059201 counts covering T_0 set-systems.
Cf.
A000169,
A003024,
A003087,
A082402,
A088957,
A334282,
A367862,
A367904,
A367908,
A368600,
A368601.
-
Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Union@@Cases[#,{_}]==Range[k] && Length[Select[Tuples[#],UnsameQ@@#&]]==1&]], {n,0,3},{k,0,n}]
Comments