cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A005173 Number of rooted trees with 3 nodes of disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.

Original entry on oeis.org

0, 1, 12, 61, 240, 841, 2772, 8821, 27480, 84481, 257532, 780781, 2358720, 7108921, 21392292, 64307941, 193185960, 580082161, 1741295052, 5225982301, 15682141200, 47054812201, 141181213812, 423577195861, 1270798696440, 3812530307041, 11437859356572, 34314114940621
Offset: 1

Views

Author

Keywords

Examples

			From _Andrew Howroyd_, Mar 28 2025: (Start)
The a(3) = 12 trees up to relabeling have one of the following 3 forms:
     {}         {1}        {1}
    /  \       /   \        |
  {1} {2,3}   {2}  {3}     {2}
                            |
                           {3}
(End)
		

References

  • F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A094262.
Cf. A003063.

Programs

  • Maple
    A005173:=-z*(1+6*z)/(z-1)/(3*z-1)/(2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[x (1+6 x)/(1-x)/(1-2 x)/(1-3 x),{x,0,30}],x] (* Harvey P. Dale, Jul 03 2023 *)

Formula

G.f.: x*(1 + 6*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)). [corrected by Ray Chandler, Jun 26 2023]
First differences give A003063, 3^(n-1) - 2^n.
From Andrew Howroyd, Mar 28 2025: (Start)
a(n) = (3^(n+1) - 2^(n+3) + 7)/2.
E.g.f.: (3*exp(x)/2 - 1)*(exp(x) - 1)^2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 06 2001
Name clarified by Andrew Howroyd, Mar 28 2025

A363024 Primes of the form 3^(k-1) - 2^k.

Original entry on oeis.org

11, 179, 601, 1931, 10456158899, 617669101316651, 984770866999239144049, 2153693958571958138940251, 1570042898793851235488822819, 14130386090585813000157964091, 11972515182561981102976512358583456508049, 19088056323407826758511836230558252318494847619
Offset: 1

Views

Author

Sébastien Tao, May 13 2023

Keywords

Comments

a(23) has 1117 digits. - Michael S. Branicky, May 26 2023

Examples

			a(1) = 3^3 - 2^4 = 27 - 16 = 11 (prime).
a(2) = 3^5 - 2^6 = 243 - 64 = 179 (prime).
		

Crossrefs

Prime terms in A003063.
Cf. A162714, A363375, A162715 (subsequence).

Programs

  • Mathematica
    Select[Table[3^(k - 1) - 2^k, {k, 1 , 100}], PrimeQ]

A254027 Table T(n,k) = 3^n - 2^k read by antidiagonals.

Original entry on oeis.org

0, 2, -1, 8, 1, -3, 26, 7, -1, -7, 80, 25, 5, -5, -15, 242, 79, 23, 1, -13, -31, 728, 241, 77, 19, -7, -29, -63, 2186, 727, 239, 73, 11, -23, -61, -127, 6560, 2185, 725, 235, 65, -5, -55, -125, -255, 19682, 6559, 2183, 721, 227, 49, -37, -119, -253, -511, 59048, 19681, 6557, 2179, 713, 211, 17, -101, -247, -509, -1023
Offset: 0

Views

Author

K. G. Stier, Jan 22 2015

Keywords

Comments

Table shows differences of a given power of 3 to the powers of 2 (columns), and differences of the powers of 3 to a given power of 2 (rows), respectively.
Note that positive terms (table's upper right area) and negative terms (lower left area) are separated by an imaginary line with slope -log(3)/log(2) = -1.5849625.. (see A020857). This "border zone" of the table is of interest in terms of how close powers of 3 and powers of 2 can get: i.e., those T(n,k) where k/n is a good rational approximation to log(3)/log(2), see A254351 for numerators k and respective A060528 for denominators n.

Examples

			Table begins
   0    2   8  26  80..
  -1    1   7  25  79..
  -3   -1   5  23  73..
  -7   -5   1  19  65..
  -15 -13  -7  11  49..
  ..   ..  ..  ..  ..
		

Crossrefs

Row 0 (=3^n-1) is A024023.
Row 1 (=3^n-2) is A058481.
Row 2 (=3^n-4) is A168611.
Column 0 (=1-2^n) is (-1)A000225.
Column 1 (=3-2^n) is (-1)A036563.
Column 2 (=9-2^n) is (-1)A185346.
Column 3 (=27-2^n) is (-1)A220087.
0,0-Diagonal (=3^n-2^n) is A001047.
1,0-Diagonal (=3^n-2^(n-1)) for n>0 is A083313 or A064686.
0,1-Diagonal (=3^n-2^(n+1)) is A003063.
0,2-Diagonal (=3^n-2^(n+2)) is A214091.

Programs

  • Mathematica
    Table[3^(n-k) - 2^k, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2017 *)
  • PARI
    for(i=0, 10, {
         for(j=0, i, print1((3^(i-j)-2^j),", "))
    });

A369490 a(n) = 3^(n+1) + 2*(-2)^(n+1).

Original entry on oeis.org

-1, 17, 11, 113, 179, 857, 1931, 7073, 18659, 61097, 173051, 539633, 1577939, 4815737, 14283371, 43177793, 128878019, 387944777, 1161212891, 3488881553, 10456158899, 31389448217, 94126401611, 282463090913, 847221500579, 2542000046057
Offset: 0

Views

Author

Philippe Deléham, Jan 24 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,6},{-1,17},26] (* James C. McMahon, Jan 30 2024 *)
  • Python
    def A369490(n): return 3**(n+1)+(1<Chai Wah Wu, Feb 25 2024

Formula

a(n) = a(n-1) + 6*a(n-2); a(0) = -1, a(1) = 17.
G.f.: (18*x-1)/((1+2*x)*(1-3*x)).
a(2*n) = A003063(2*n+2).
a(2*n+1) = A085279(2*n+3).
a(n) = 18*A015441(n) - A015441(n+1).

A239926 3^(p-1)-2^(p+1) for primes p > 3.

Original entry on oeis.org

17, 473, 54953, 515057, 42784577, 386371913, 31364282393, 22875718713137, 205886837127353, 150094360419092177, 12157661061010417697, 109418971539326314793, 8862937838177524385273, 6461081871212274789450257, 4710128696093323330314756713
Offset: 1

Views

Author

Vincenzo Librandi, Jun 17 2014

Keywords

Comments

3^(p-1)-2^(p+1) can be written as (3^((p-1)/2)-2^((p+1)/2))*(3^((p-1)/2)+2^((p+1)/2)). Since 3^((p-1)/2)-2^((p+1)/2) > 1 for p > 5, these numbers are all composite after 17 = (3^2-2^3)*(3^2+2^3).

Crossrefs

Cf. A000040, A003063, A135171 (numbers of the form 3^p-2^p with p prime), A214091 (supersequence).

Programs

  • Magma
    [3^(p-1)-2^(p+1): p in PrimesInInterval(4,100)];
  • Mathematica
    Table[3^(Prime[n] - 1) - 2^(Prime[n] + 1), {n, 3, 100}]

A232774 Triangle T(n,k), read by rows, given by T(n,0)=1, T(n,1)=2^(n+1)-n-2, T(n,n)=(-1)^(n-1) for n > 0, T(n,k)=T(n-1,k)-T(n-1,k-1) for 1 < k < n.

Original entry on oeis.org

1, 1, 1, 1, 4, -1, 1, 11, -5, 1, 1, 26, -16, 6, -1, 1, 57, -42, 22, -7, 1, 1, 120, -99, 64, -29, 8, -1, 1, 247, -219, 163, -93, 37, -9, 1, 1, 502, -466, 382, -256, 130, -46, 10, -1, 1, 1013, -968, 848, -638, 386, -176, 56, -11, 1, 2036, -1981, 1816, -1486, 1024
Offset: 0

Views

Author

Philippe Deléham, Nov 30 2013

Keywords

Comments

Row sums are A000079(n) = 2^n.
Diagonal sums are A024493(n+1) = A130781(n).
Sum_{k=0..n} T(n,k)*x^k = -A003063(n+2), A159964(n), A000012(n), A000079(n), A001045(n+2), A056450(n), (-1)^(n+1)*A232015(n+1) for x = -2, -1, 0, 1, 2, 3, 4 respectively.

Examples

			Triangle begins:
  1;
  1,    1;
  1,    4,   -1;
  1,   11,   -5,   1;
  1,   26,  -16,   6,   -1;
  1,   57,  -42,  22,   -7,   1;
  1,  120,  -99,  64,  -29,   8,   -1;
  1,  247, -219, 163,  -93,  37,   -9,  1;
  1,  502, -466, 382, -256, 130,  -46, 10,  -1;
  1, 1013, -968, 848, -638, 386, -176, 56, -11, 1;
		

Crossrefs

Formula

G.f.: Sum_{n>=0, k=0..n} T(n,k)*y^k*x^n=(1+2*(y-1)*x)/((1-2*x)*(1+(y-1)*x)).
|T(2*n,n)| = 4^n = A000302(n).
T(n,k) = (-1)^(k-1) * (Sum_{i=0..n-k} (2^(i+1)-1) * binomial(n-i-1,k-1)) for 0 < k <= n and T(n,0) = 1 for n >= 0. - Werner Schulte, Mar 22 2019
Previous Showing 11-16 of 16 results.