cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A201821 Automorphic numbers: n^2 ends with n in base 6 (written in base 6).

Original entry on oeis.org

0, 1, 3, 4, 13, 44, 213, 344, 5344, 50213, 205344, 350213, 1350213, 4205344, 21350213, 34205344, 221350213, 334205344, 2221350213, 3334205344, 52221350213, 152221350213, 403334205344, 5152221350213, 55152221350213, 155152221350213, 400403334205344
Offset: 1

Views

Author

Martin Renner, Dec 06 2011

Keywords

Examples

			a(3) = (3)_6 = 3 since 3^2 = 9 = (13)_6 ends with 3 in base 6.
a(4) = (4)_6 = 4 since 4^2 = 16 = (24)_6 ends with 4 in base 6.
a(5) = (13)_6 = 9 since 9^2 = 81 = (213)_6 ends with 13 in base 6.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, p. 147.
  • Maurice Kraitchik, Mathematical Recreations, New York, Dover, (2nd ed.) 1953, p. 77.

Crossrefs

Cf. A237583 (written in base 10), A003226, A201918, A201919, A201921, A201948.

Extensions

More terms from Eric M. Schmidt, Feb 09 2014

A201919 Automorphic numbers n^2 ends with n in base 14 (written in base 10).

Original entry on oeis.org

0, 1, 7, 8, 49, 148, 344, 2401, 36016, 151264, 386561, 1764736, 5764801, 46941952, 58471553, 374712065, 1101076992, 4802079233, 15858967552, 139825248256, 149429406721, 1595702681601, 2453862488064, 14602557997056, 42091354378241, 127990382747648
Offset: 1

Views

Author

Martin Renner, Dec 06 2011

Keywords

Examples

			a(3) = 7 = (7)_14 since 7^2 = 49 = (37)_14 ends with 7 in base 14.
a(4) = 8 = (8)_14 since 8^2 = 64 = (48)_14 ends with 8 in base 14.
a(5) = 49 = (37)_14 since 49^2 = 2401 = (C37)_14 ends with 37 in base 14.
		

Crossrefs

Programs

Extensions

More terms from Eric M. Schmidt, Feb 09 2014

A046831 Numbers k such that decimal expansion of k^2 contains k as a substring and k does not end in 0.

Original entry on oeis.org

1, 5, 6, 25, 76, 376, 625, 3792, 9376, 14651, 90625, 109376, 495475, 505025, 890625, 971582, 1713526, 2890625, 4115964, 5133355, 6933808, 7109376, 10050125, 12890625, 48588526, 50050025, 66952741, 87109376, 88027284, 88819024
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A018834. - Chai Wah Wu, Apr 04 2023

Crossrefs

Programs

  • Haskell
    a046831 n = a046831_list !! (n-1)
    a046831_list = filter ((> 0) . (`mod` 10)) a018834_list
    -- Reinhard Zumkeller, Jul 27 2011
    
  • Mathematica
    Reap[For[n = 1, n < 10^8, n++, If[Mod[n, 10] != 0, If[StringPosition[ToString[n^2], ToString[n]] != {}, Print[n]; Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Apr 04 2013 *)
  • Python
    from itertools import count, islice
    def A046831_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:n%10 and str(n) in str(n**2), count(max(startvalue,0)))
    A046831_list = list(islice(A046831_gen(),20)) # Chai Wah Wu, Apr 04 2023

A068407 Automorphic numbers: numbers k such that k^5 ends with k. Also m-morphic numbers for all m > 5 such that m-1 is not divisible by 10 and m == 1 (mod 4).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 25, 32, 43, 49, 51, 57, 68, 75, 76, 93, 99, 125, 193, 249, 251, 307, 375, 376, 432, 443, 499, 501, 557, 568, 624, 625, 693, 749, 751, 807, 875, 943, 999, 1249, 1251, 1693, 1875, 2057, 2499, 2501, 2943, 3125, 3307, 3568, 3749, 3751
Offset: 1

Views

Author

Benoit Cloitre, Mar 08 2002

Keywords

Examples

			13568 is a term because 13568^5 = 459810807237016813568 ends with 13568.
		

Crossrefs

Programs

  • Magma
    [n : n in [0..3749] | Intseq(n^5)[1..#Intseq(n)] eq Intseq(n)]; // Arkadiusz Wesolowski, Nov 15 2013
  • Mathematica
    Select[Range[0,100000],PowerMod[#,5,10^IntegerLength[#]]==#&] (* Harvey P. Dale, Nov 04 2011 *)
  • Sage
    def automorphic(maxdigits, pow, base=10) :
        morphs = [[0]]
        for i in range(maxdigits):
            T=[d*base^i+x for x in morphs[-1] for d in range(base)]
            morphs.append([x for x in T if x^pow % base^(i+1) == x])
        return sorted(set(sum(morphs,[])))
    # (call with pow=5 for this sequence), Eric M. Schmidt, Jul 29 2013
    

A055620 Digits of an idempotent 6-adic number.

Original entry on oeis.org

4, 4, 3, 5, 0, 2, 4, 3, 3, 3, 0, 4, 0, 0, 4, 1, 4, 2, 4, 3, 0, 0, 0, 5, 0, 3, 0, 0, 0, 2, 4, 1, 2, 2, 5, 1, 3, 3, 1, 5, 4, 2, 2, 4, 1, 5, 3, 5, 4, 3, 0, 3, 1, 5, 3, 2, 2, 5, 2, 1, 0, 0, 3, 0, 0, 1, 2, 3, 2, 4, 0, 1, 0, 1, 5, 4, 4, 5, 1, 3, 5, 4, 2, 5, 4, 0, 5, 1, 2, 0, 5, 4, 5, 3, 1, 5, 2, 1, 3, 3, 2, 3, 3, 5, 3
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), Jun 04 2000

Keywords

Comments

( a(0) + a(1)*6 + a(2)*6^2 + ... )^k = a(0) + a(1)*6 + a(2)*6^2 + ... for each k. Apart from 0 and 1 in base 6 there are only 2 numbers with this property. For the other see A054869.

Examples

			(a(0) + a(1)*6 + a(2)*6^2 + a(3)*6^3)^2 == (a(0) + a(1)*6 + a(2)*6^2 + a(3)*6^3) mod 6^4 because 1478656 == 1216 (mod 1296).
		

References

  • V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.

Crossrefs

The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.

Programs

  • PARI
    first(p)=Vecrev(digits(lift(Mod(4,6^p)^3^p), 6)) \\ Charles R Greathouse IV, Nov 01 2022
  • Python
    n=10000;res=pow((3**n+1)//2,n,3**n)*2**n
    for i in range(n):print(i,res%6);res//=6
    # Kenny Lau, Jun 09 2018
    

Formula

If A is the 6-adic number, A == 4^(3^n) mod 6^n. - Robert Dawson, Oct 28 2022

A201918 Automorphic numbers: n^2 ends with n in base 12 (written in base 10).

Original entry on oeis.org

0, 1, 4, 9, 64, 81, 513, 1216, 6400, 14337, 234496, 483328, 2502657, 17432577, 18399232, 412549120, 842530816, 4317249537, 11162091520, 50755272705, 692253097984, 2178269839360, 6737830608897, 46758772080640, 60234433298433, 474731593596928, 809186870951937
Offset: 1

Views

Author

Martin Renner, Dec 06 2011

Keywords

Examples

			a(3) = 4 = (4)_12 since 4^2 = 16 = (14)_12 ends with 4 in base 12.
a(4) = 9 = (9)_12 since 9^2 = 81 = (69)_12 ends with 9 in base 12.
a(5) = 64 = (54)_12 since 64^2 = 4096 = (2454)_12 ends with 54 in base 12.
		

Crossrefs

Programs

  • Mathematica
    a201918[n_Integer] := Module[{i = 0}, Flatten[Last[Reap[
         Do[If[
           IntegerDigits[i^2, 12][[-Length[IntegerDigits[i, 12]] ;; -1]] ==
             IntegerDigits[i, 12], Sow[i]], {i, n}]]]]]; a201918[12^6] (* Michael De Vlieger, Aug 13 2014 *)
  • Sage
    # See A003226. - Eric M. Schmidt, Feb 09 2014

Extensions

More terms from Eric M. Schmidt, Feb 09 2014

A259468 Digits of an idempotent 12-adic number.

Original entry on oeis.org

4, 5, 8, 3, 11, 1, 6, 11, 1, 2, 11, 2, 5, 4, 3, 11, 7, 6, 2, 11, 6, 8, 9, 6, 1, 10, 3, 10, 1, 8, 10, 3, 3, 1, 10, 8, 6, 4, 6, 11, 2, 0, 4, 0, 3, 8, 9, 9, 5, 3, 1, 0, 9, 7, 11, 8, 7, 6, 5, 2, 5, 1, 10, 2, 11, 0, 2, 7, 6, 6, 5, 4, 7, 2, 0, 5, 11, 7, 8, 7, 2, 6
Offset: 0

Views

Author

N. J. A. Sloane, Jul 02 2015

Keywords

References

  • V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.

Crossrefs

The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.

Programs

  • Sage
    def a_list(n) : return crt(1, 0, 3^n, 4^n).digits(12) # Eric M. Schmidt, Jul 09 2015

Extensions

More terms from Eric M. Schmidt, Jul 09 2015

A259469 Digits of an idempotent 12-adic number.

Original entry on oeis.org

9, 6, 3, 8, 0, 10, 5, 0, 10, 9, 0, 9, 6, 7, 8, 0, 4, 5, 9, 0, 5, 3, 2, 5, 10, 1, 8, 1, 10, 3, 1, 8, 8, 10, 1, 3, 5, 7, 5, 0, 9, 11, 7, 11, 8, 3, 2, 2, 6, 8, 10, 11, 2, 4, 0, 3, 4, 5, 6, 9, 6, 10, 1, 9, 0, 11, 9, 4, 5, 5, 6, 7, 4, 9, 11, 6, 0, 4, 3, 4, 9, 5, 11
Offset: 0

Views

Author

N. J. A. Sloane, Jul 02 2015

Keywords

References

  • V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.

Crossrefs

The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.

Programs

  • Sage
    def a_list(n) : return crt(0, 1, 3^n, 4^n).digits(12) # Eric M. Schmidt, Jul 09 2015

Extensions

More terms from Eric M. Schmidt, Jul 09 2015

A288845 Values of n such that 4^n ends in n, or expomorphic numbers in base 4.

Original entry on oeis.org

6, 96, 896, 8896, 28896, 728896, 1728896, 11728896, 411728896, 90411728896, 290411728896, 5290411728896, 55290411728896, 555290411728896, 2555290411728896, 302555290411728896, 2302555290411728896, 22302555290411728896, 622302555290411728896, 3622302555290411728896
Offset: 1

Views

Author

Bernard Schott, Jun 18 2017

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial zeros) a(n) is expomorphic relative to base b (here 4) if a(n) has exactly n decimal digits and if b^a(n) == a(n) (mod 10^n) or, equivalently, b^a(n) ends in a(n). [See Crux Mathematicorum link.]
For sequences in the OEIS, no term is allowed to begin with a digit 0 (except for the 1-digit number 0 itself). However, in the problem as defined in the Crux Mathematicorum article, leading 0 digits are allowed; under that definition, "0411728896" would be included because the last 10 digits of 4^0411728896 are 0411728896, and also 02555290411728896" because the last 17 digits of 4^02555290411728896 are "02555290411728896". However, these are not in the sequence as defined here. - Jon E. Schoenfield

Examples

			4^6 = 4096 ends in 6, so 6 is a term; 4^96 = ....896 ends in 96, so 96 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers), A133614.

Programs

Extensions

a(6)-a(9) from Gheorghe Coserea, Jun 21 2017
a(10)-a(11) from Robert G. Wilson v, Jun 24 2017

A029943 Substring of both its square and its cube.

Original entry on oeis.org

0, 1, 5, 6, 10, 25, 50, 60, 76, 100, 250, 376, 500, 600, 625, 760, 1000, 2500, 3760, 5000, 6000, 6250, 7600, 9376, 10000, 25000, 37600, 50000, 60000, 62500, 76000, 90625, 93760, 100000, 109376, 250000, 376000, 500000, 600000, 625000
Offset: 1

Views

Author

Keywords

Comments

Intersection of A018834 and A029942. - Reinhard Zumkeller, Feb 29 2012

Programs

  • Haskell
    import Data.List (isInfixOf)
    a029943 n = a029943_list !! (n-1)
    a029943_list = filter f [0..] where
       f x = show x `isInfixOf` show (x^2) && show x `isInfixOf` show (x^3)
    -- Reinhard Zumkeller, Nov 26 2011
  • Mathematica
    ssscQ[n_]:=Module[{idn=IntegerDigits[n],sq=IntegerDigits[n^2], cu=IntegerDigits[n^3],len=IntegerLength[n]},MemberQ[Partition[ sq,len,1], idn] &&MemberQ[Partition[cu,len,1],idn]]; Join[{0}, Select[Range[700000],ssscQ]] (* Harvey P. Dale, Apr 24 2011 *)

Formula

a(n) = A003226(m) * 10^k for appropriate m and k. [Reinhard Zumkeller, Nov 26 2011]

Extensions

Offset corrected by Reinhard Zumkeller, Nov 26 2011
Previous Showing 11-20 of 49 results. Next