cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003226 Automorphic numbers: m^2 ends with m.

Original entry on oeis.org

0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 1787109376, 8212890625, 18212890625, 81787109376, 918212890625, 9918212890625, 40081787109376, 59918212890625, 259918212890625, 740081787109376
Offset: 1

Views

Author

Keywords

Comments

Also called curious numbers.
For entries after the second, two successive terms sum up to a total having the form 10^n + 1. - Lekraj Beedassy, Apr 29 2005 [This comment is clearly wrong as stated. The sums of two consecutive terms are 1, 6, 11, 31, 101, 452, 1001, 10001, 100001, 200001, 1000001, 3781250, .... - T. D. Noe, Nov 14 2010]
If a d-digit number n is in the sequence, then so is 10^d+1-n. However, the same number can be 10^d+1-n for different n in the sequence (e.g., 10^3+1-376 = 10^4+1-9376 = 625), which spoils Beedassy's comment. - Robert Israel, Jun 19 2015
Substring of both its square and its cube not congruent to 0 (mod 10). See A029943. - Robert G. Wilson v, Jul 16 2005
a(n)^k ends with a(n) for k > 0; see also A029943. - Reinhard Zumkeller, Nov 26 2011
Apart from initial term, a subsequence of A046831. - M. F. Hasler, Dec 05 2012
This is also the sequence of numbers such that the n-th m-gonal number ends in n for any m == 0,4,8,16 (mod 20). - Robert Dawson, Jul 09 2018
Apart from 6, a subsequence of A301912. - Robert Dawson, Aug 01 2018

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 76, p. 26, Ellipses, Paris 2008.
  • V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
  • R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174.
  • Jan Gullberg, Mathematics, From the Birth of Numbers, W. W. Norton & Co., NY, page 253-254.
  • B. A. Naik, 'Automorphic numbers' in 'Science Today'(subsequently renamed '2001') May 1982 pp. 59, Times of India, Mumbai.
  • Ya. I. Perelman, Algebra can be fun, pp. 97-98.
  • Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Hoboken, 2005, p. 64.
  • C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (isSuffixOf)
    a003226 n = a003226_list !! (n-1)
    a003226_list = filter (\x -> show x `isSuffixOf` show (x^2)) a008851_list
    -- Reinhard Zumkeller, Jul 27 2011
    
  • Magma
    [n: n in [0..10^7] | Intseq(n^2)[1..#Intseq(n)] eq Intseq(n)]; // Vincenzo Librandi, Jul 03 2015
    
  • Maple
    V:= proc(m) option remember;
      select(t -> t^2 - t mod 10^m = 0, map(s -> seq(10^(m-1)*j+s, j=0..9), V(m-1)))
    end proc:
    V(0):= {0,1}:
    V(1):= {5,6}:
    sort(map(op,[V(0),seq(V(i) minus V(i-1),i=1..50)])); # Robert Israel, Jun 19 2015
  • Mathematica
    f[k_] := (r = Reduce[0 < 10^k < n < 10^(k + 1) && n^2 == m*10^(k + 1) + n, {n, m}, Integers]; If[Head[r] === And, n /. ToRules[r], n /. {ToRules[r]}]); Flatten[ Join[{0, 1}, Table[f[k], {k, 0, 13}]]] (* Jean-François Alcover, Dec 01 2011 *)
    Union@ Join[{1}, Array[PowerMod[5, 2^#, 10^#] &, 16, 0], Array[PowerMod[16, 5^#, 10^#] &, 16, 0]] (* Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    is_A003226(n)={n<2 || 10^valuation(n^2-n,10)>n} \\ M. F. Hasler, Dec 05 2012
    
  • PARI
    A003226(n)={ n<3 & return(n-1); my(i=10,j=10,b=5,c=6,a=b); for( k=4,n, while(b<=a, b=b^2%i*=10); while(c<=a, c=(2-c)*c%j*=10); a=min(b,c)); a } \\ M. F. Hasler, Dec 06 2012
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.modular import crt
    def A003226_gen(): # generator of terms
        a = 0
        yield from (0,1)
        for n in count(0):
            b = sorted((int(crt(m:=(1< a:
                yield from b
                a = b[1]
            elif b[1] > a:
                yield b[1]
                a = b[1]
    A003226_list = list(islice(A003226_gen(),15)) # Chai Wah Wu, Jul 25 2022
  • Sage
    def automorphic(maxdigits, pow, base=10) :
        morphs = [[0]]
        for i in range(maxdigits):
            T=[d*base^i+x for x in morphs[-1] for d in range(base)]
            morphs.append([x for x in T if x^pow % base^(i+1) == x])
        res = list(set(sum(morphs, []))); res.sort()
        return res
    # call with pow=2 for this sequence, Eric M. Schmidt, Feb 09 2014
    

Formula

Equals {0, 1} union A007185 union A016090.

Extensions

More terms from Michel ten Voorde, Apr 11 2001
Edited by David W. Wilson, Sep 26 2002
Incorrect statement removed from title by Robert Dawson, Jul 09 2018

A018834 Numbers k such that the decimal expansion of k^2 contains k as a substring.

Original entry on oeis.org

0, 1, 5, 6, 10, 25, 50, 60, 76, 100, 250, 376, 500, 600, 625, 760, 1000, 2500, 3760, 3792, 5000, 6000, 6250, 7600, 9376, 10000, 14651, 25000, 37600, 50000, 60000, 62500, 76000, 90625, 93760, 100000, 109376, 250000, 376000, 495475, 500000, 505025
Offset: 1

Views

Author

Keywords

Examples

			25^2 = 625 which contains 25.
3792^2 = 14_3792_64, 14651^2 = 2_14651_801.
		

Crossrefs

Cf. A000290. Supersequence of A029943.
Cf. A018826 (base 2), A018827 (base 3), A018828 (base 4), A018829 (base 5), A018830 (base 6), A018831 (base 7), A018832 (base 8), A018833 (base 9).
Cf. A029942 (cubes), A075904 (4th powers), A075905 (5th powers).

Programs

  • Haskell
    import Data.List (isInfixOf)
    a018834 n = a018834_list !! (n-1)
    a018834_list = filter (\x -> show x `isInfixOf` show (x^2)) [0..]
    -- Reinhard Zumkeller, Jul 27 2011
    
  • Mathematica
    Select[Range[510000], MemberQ[FromDigits /@ Partition[IntegerDigits[#^2], IntegerLength[#], 1], #] &] (* Jayanta Basu, Jun 29 2013 *)
    Select[Range[0,510000],StringPosition[ToString[#^2],ToString[#]]!={}&] (* Ivan N. Ianakiev, Oct 02 2016 *)
  • Python
    from itertools import count, islice
    def A018834_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:str(n) in str(n**2), count(max(startvalue,0)))
    A018834_list = list(islice(A018834_gen(),20)) # Chai Wah Wu, Apr 04 2023

A029942 Numbers k such that the decimal expansion of k^3 contains k as a substring.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 10, 24, 25, 32, 40, 49, 50, 51, 56, 60, 75, 76, 90, 99, 100, 125, 240, 249, 250, 251, 375, 376, 400, 490, 499, 500, 501, 510, 600, 624, 625, 749, 750, 751, 760, 782, 875, 900, 990, 999, 1000, 1249, 1250, 2400, 2490, 2500, 2510
Offset: 1

Views

Author

Keywords

Examples

			24 is a term as 24^3 = 13824 contains 24 as a substring.
250 is a term as 250^3 = 1562500 contains 250 as a substring.
6^3 = 21_6, 782^3 = 4_782_11768.
		

Crossrefs

Cf. A018834 (squares), A075904 (4th powers), A075905 (5th powers), A136490 (base 2).
Cf. A000578. Supersequence of A029943.

Programs

  • Haskell
    import Data.List (isInfixOf)
    a029942 n = a029942_list !! (n-1)
    a029942_list = [x | x <- [0..], show x `isInfixOf` show (x^3)]
    -- Reinhard Zumkeller, Feb 29 2012
  • Mathematica
    n3ssQ[n_]:=Module[{idn=IntegerDigits[n],idn3=Partition[ IntegerDigits[ n^3], IntegerLength[n],1]},MemberQ[idn3,idn]]; Join[{0},Select[Range[ 2600],n3ssQ]] (* Harvey P. Dale, Jan 23 2012 *)
    Select[Range[0,2600],SequenceCount[IntegerDigits[#^3],IntegerDigits[ #]]> 0&] (* Harvey P. Dale, Aug 29 2021 *)

A178983 The smallest cube containing n as a substring.

Original entry on oeis.org

0, 1, 27, 343, 64, 125, 64, 27, 8, 729, 1000, 91125, 125, 1331, 140608, 15625, 216, 1728, 85184, 2197, 205379, 216, 226981, 103823, 13824, 125, 9261, 27, 1728, 729, 39304, 1331, 5832, 1331, 343, 35937, 97336, 3375, 13824, 39304, 4096, 531441, 42875, 343
Offset: 0

Views

Author

Andy Martin, Jan 02 2011

Keywords

Examples

			a(3) = 7^3 = 343, because it contains 3 as a substring and no smaller cube contains 3.
		

Crossrefs

Programs

  • Mathematica
    subs[n_] := Module[{d = IntegerDigits[n], len}, len = Length[d]; Union[Flatten[Table[FromDigits[Take[d, {i, k}]], {k, len}, {i, k}]]]]; Table[k = 0; While[! MemberQ[subs[k^3], n], k++]; k^3, {n, 0, 100}] (* T. D. Noe, Nov 06 2013 *)
    With[{cbs=Range[0,100]^3},Table[SelectFirst[cbs,SequenceCount[IntegerDigits[#],IntegerDigits[n]]>0&],{n,0,50}]] (* Harvey P. Dale, Nov 17 2024 *)
  • Ruby
    # For a given nonnegative integer n,
    # find the smallest nonnegative cube that contains it as a substring.
    NUM_TERMS = 30
    (0...NUM_TERMS).each{ |i|
      (0..(1.0/0.0)).each{ |j|
        (print "#{j*j*j}" + ", "; break) if "#{j*j*j}".include?("#{i}")
      }
    }

Extensions

Edited by Alois P. Heinz, Jan 02 2011

A133408 Numbers k such that k is a substring of both its square and its cube in base 2 (written in base 10).

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 32, 41, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296
Offset: 1

Views

Author

Jonathan Vos Post, Dec 22 2007

Keywords

Comments

Binary analog of A029943. Subset of A018826.
Row 2 of array whose row 1 is A002275 and whose row 10 is A029943.
Contains every power of 2. Is 41 the only term which is not a power of 2? - Sean A. Irvine, Oct 11 2009
Up to 1.7*10^13 the sequence does not contain numbers greater than 41 which are not a power of 2. - Giovanni Resta, Aug 30 2018

Examples

			41 is a term because 41 (base 2) = 101001, which is a substring of 41^2 (base 2) = 11010010001 and which is a substring of 41^3 (base 2) = 10000110100111001.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,10^6],SequenceCount[IntegerDigits[#^2,2],IntegerDigits[#,2]]>0&&SequenceCount[IntegerDigits[#^3,2],IntegerDigits[#,2]]>0&] (* James C. McMahon, Mar 17 2025 *)

Formula

{k such that A007088(k) is a substring of A007088(k^2) and is a substring of A007088(k^3)}.

Extensions

Corrected and extended by Sean A. Irvine, Oct 11 2009
a(32) from Oliver Allen, Aug 08 2017
a(33)-a(35) from Oliver Allen, Aug 10 2017
Showing 1-5 of 5 results.