cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A248406 Noncongruent squarefree numbers n with A248395(n)/d(n) = -2, where d(n) = A000005(n).

Original entry on oeis.org

146, 178, 274, 322, 466, 938, 994, 1002, 1234, 1394, 1498, 1714, 1866, 1906, 2066, 2098, 2162, 2194, 2386, 2578, 2586, 2786, 2794, 2962, 3002, 3034, 3218, 3266, 3346, 3658, 3682, 3914, 3986, 4090, 4130, 4594, 4738, 4786, 4946, 5170, 5210, 5234, 5266, 5402, 5458
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A259680 Let m = A062695(n); a(n) is value of s in decomposition of m defined in Comments.

Original entry on oeis.org

1, 1, 1, 137, 6, 29, 1, 1, 97, 5, 73, 1, 1, 1, 1, 1, 1, 17, 6, 1, 53, 1, 5, 41, 6, 2, 1, 1, 1, 101, 257, 7, 17, 1, 1, 7, 2, 337, 689, 7, 1, 1, 761, 37, 793, 1, 1, 1, 181, 61, 1, 21, 5, 1, 151, 1, 1, 1, 7, 1, 1, 1145, 2, 1, 11, 7, 2, 1, 593, 1, 1, 1217, 1, 1, 641
Offset: 1

Views

Author

N. J. A. Sloane, Jul 04 2015

Keywords

Comments

Let m = A062695(n). Write m*y^2 = x^3 - x as m*square = A*B*(A-B)*(A+B) where A and B are the numerator and denominator of x. Then A, B, A-B, A+B have the form s*a^2, t*b^2, u*c^2, v*d^2 for some decomposition of m as s*t*u*v and some natural numbers a,b,c,d. These eight numbers are given in A259680-A259687.

Crossrefs

Extensions

More terms from Jinyuan Wang, Jan 01 2021

A259687 Let m = A062695(n); a(n) is value of d in decomposition of m defined in Comments.

Original entry on oeis.org

1, 1, 1, 81, 5, 7, 1, 1, 13, 1, 11, 1, 185, 1, 1, 7, 1, 27, 1, 1, 9, 1, 9, 9, 11, 3, 15, 325, 1, 11, 17, 1, 1, 1, 1, 1, 5, 25, 33, 11, 7, 47, 801, 5, 193, 1, 1, 1, 19, 11, 13, 25, 21, 17, 635, 5, 37, 1, 1, 1, 1, 177, 23, 1, 1, 43, 9, 1, 5465, 27, 1, 2721, 1, 17
Offset: 1

Views

Author

N. J. A. Sloane, Jul 04 2015

Keywords

Comments

Let m = A062695(n). Write m*y^2 = x^3 - x as m*square = A*B*(A-B)*(A+B) where A and B are the numerator and denominator of x. Then A, B, A-B, A+B have the form s*a^2, t*b^2, u*c^2, v*d^2 for some decomposition of m as s*t*u*v and some natural numbers a,b,c,d. These eight numbers are given in A259680-A259687.

Crossrefs

Extensions

More terms from Jinyuan Wang, Jan 01 2021

A072068 Number of integer solutions to the equation 2x^2+y^2+8z^2=m for an odd number m=2n-1.

Original entry on oeis.org

2, 4, 0, 0, 10, 12, 0, 0, 16, 12, 0, 0, 10, 16, 0, 0, 16, 24, 0, 0, 32, 12, 0, 0, 18, 24, 0, 0, 16, 36, 0, 0, 32, 12, 0, 0, 16, 28, 0, 0, 34, 36, 0, 0, 48, 24, 0, 0, 16, 36, 0, 0, 32, 36, 0, 0, 32, 24, 0, 0, 26, 24, 0, 0
Offset: 1

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the odd number 2n-1 is a congruent number if it is squarefree and a(n) = 2*A072069(n).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(2) = 4 because (1,1,0), (-1,1,0), (1,-1,0) and (-1,-1,0) are solutions when m=3.
G.f. = 2*x + 4*x^2 + 10*x^5 + 12*x^6 + 16*x^9 + 12*x^10 + 10*x^13 + 16*x^14 + 16*x^17 + ...
G.f. = 2*q + 4*q^3 + 10*q^9 + 12*q^11 + 16*q^17 + 12*q^19 + 10*q^25 + 16*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    maxN=128; soln1=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/2]]; yMax=Ceiling[Sqrt[maxN]]; zMax=Ceiling[Sqrt[maxN/8]]; Do[n=2x^2+y^2+8z^2; If[OddQ[n]&&nA072068 = CoefficientList[s, x] // Rest (* Jean-François Alcover, Feb 16 2015, after Michael Somos *)
  • PARI
    {a(n) = my(A); n--; if( n<0, 0, A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^5 * eta(x^16 + A)^2), n))}; /* Michael Somos, Dec 26 2019 */

Formula

Expansion of 2 * x * phi(x) * psi(x^4) * phi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 08 2012
Expansion of 2 * q^(1/2) * eta(q^2)^5 * eta(q^8)^7 / (eta(q)^2 * eta(q^4)^5 * eta(q^16)^2) in powers of q. - Michael Somos, Feb 19 2015

A072069 Number of integer solutions to the equation 2x^2+y^2+32z^2=m for an odd number m=2n-1.

Original entry on oeis.org

2, 4, 0, 0, 6, 4, 0, 0, 4, 4, 0, 0, 2, 8, 0, 0, 12, 8, 0, 0, 16, 12, 0, 0, 10, 16, 0, 0, 12, 20, 0, 0, 16, 4, 0, 0, 12, 12, 0, 0, 14, 20, 0, 0, 20, 8, 0, 0, 4, 20, 0, 0, 8, 12, 0, 0, 24, 8, 0, 0, 14, 8, 0, 0
Offset: 1

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the odd number 2n-1 is a congruent number if it is squarefree and 2 a(n) = A072068(n).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(2) = 4 because (1,1,0), (-1,1,0), (1,-1,0) and (-1,-1,0) are solutions when m=3.
G.f. = 2*x + 4*x^2 + 6*x^5 + 4*x^6 + 4*x^9 + 4*x^10 + 2*x^13 + 8*x^14 + ... - _Michael Somos_, Dec 26 2019
G.f. = 2*q + 4*q^3 + 6*q^9 + 4*q^11 + 4*q^17 + 4*q^19 + 2*q^25 + 8*q^27 + 12*q^33
+ ...
		

References

  • J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.

Crossrefs

Programs

  • Mathematica
    maxN=128; soln2=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/2]]; yMax=Ceiling[Sqrt[maxN]]; zMax=Ceiling[Sqrt[maxN/32]]; Do[n=2x^2+y^2+32z^2; If[OddQ[n]&&n
    				
  • PARI
    {a(n) = my(A); n--; if( n<0, 0, A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^2 * eta(x^32 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3 * eta(x^16 + A)^2 * eta(x^64 + A)^2), n))}; /* Michael Somos, Dec 26 2019 */

Formula

Expansion of 2 * x * phi(x) * psi(x^4) * phi(x^16) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 08 2012
Expansion of 2 * q^(1/2) * eta(q^2)^5 * eta(q^8)^2 * eta(q^32)^5 / (eta(q)^2 * eta(q^4)^3 * eta(q^16)^2 * eta(q^64)^2) in powers of q. - Michael Somos, Dec 26 2019

A072070 Number of integer solutions to the equation 4*x^2 + y^2 + 8*z^2 = n.

Original entry on oeis.org

1, 2, 0, 0, 4, 4, 0, 0, 6, 6, 0, 0, 8, 12, 0, 0, 12, 8, 0, 0, 8, 8, 0, 0, 8, 14, 0, 0, 16, 4, 0, 0, 6, 16, 0, 0, 12, 20, 0, 0, 24, 8, 0, 0, 8, 20, 0, 0, 24, 18, 0, 0, 24, 12, 0, 0, 0, 16, 0, 0, 16, 20, 0, 0, 12, 8, 0, 0, 16, 16, 0, 0, 30, 32, 0, 0, 24, 16, 0, 0, 24, 18, 0, 0, 16, 24, 0, 0, 24, 16
Offset: 0

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the even number 2n is a congruent number if it is squarefree and a(n) = 2 A072071(n).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(4) = 4 because (1, 0, 0), (-1, 0, 0), (0, 2, 0) and (0, -2, 0) are solutions.
G.f. = 1 + 2*q + 4*q^4 + 4*q^5 + 6*q^8 + 6*q^9 + 8*q^12 + 12*q^13 + 12*q^16 + 8*q^17 + ...
		

References

  • J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.

Crossrefs

Programs

  • Mathematica
    maxN=128; soln3=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/8]]; yMax=Ceiling[Sqrt[maxN/2]]; zMax=Ceiling[Sqrt[maxN/16]]; Do[n=4x^2+y^2+8z^2; If[n>0&&n<=maxN/2, s=8; If[x==0, s=s/2]; If[y==0, s=s/2]; If[z==0, s=s/2]; soln3[[n]]+=s], {x, 0, xMax}, {y, 0, yMax}, {z, 0, zMax}]
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^4] EllipticTheta[ 3, 0, q^8], {q, 0, n}]; (* Michael Somos, Jul 23 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-4 * eta(x^8 + A)^3 * eta(x^16 + A)^3 * eta(x^32 + A)^-2, n))}; /* Michael Somos, Feb 11 2003 */

Formula

Expansion of phi(q) * phi(q^4) * phi(q^8) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jun 09 2012
Euler transform of period 32 sequence [2, -3, 2, 1, 2, -3, 2, -2, 2, -3, 2, 1, 2, -3, 2, -5, 2, -3, 2, 1, 2, -3, 2, -2, 2, -3, 2, 1, 2, -3, 2, -3, ...]. - Michael Somos, Feb 11 2003
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A014455(n). - Michael Somos, Jun 08 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(7/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A080917. - Michael Somos, Jul 23 2018

A072071 Number of integer solutions to the equation 4x^2+y^2+32z^2=n.

Original entry on oeis.org

1, 2, 0, 0, 4, 4, 0, 0, 4, 2, 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 8, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 6, 4, 0, 0, 12, 12, 0, 0, 16, 8, 0, 0, 0, 12, 0, 0, 8, 10, 0, 0, 24, 4, 0, 0, 0, 12, 0, 0, 0, 12, 0, 0, 12, 8, 0, 0, 16, 8, 0, 0, 20, 12, 0, 0, 0, 8, 0, 0, 8, 6, 0, 0, 16, 16, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 8
Offset: 0

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the even number 2n is a congruent number if it is squarefree and 2 a(n) = A072070(n).

Examples

			a(4) = 4 because (1,0,0), (-1,0,0), (0,2,0) and (0,-2,0) are solutions.
1 + 2*x + 4*x^4 + 4*x^5 + 4*x^8 + 2*x^9 + 4*x^13 + 4*x^16 + 4*x^17 + 8*x^20 + ...
		

References

  • J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.

Crossrefs

Programs

  • Mathematica
    J12[q_] := Sum[q^n^2, {n, -10, 10}]; CoefficientList[Series[J12[q]J12[q^4]J12[q^32], {q, 0, 100}], q]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-4 * eta(x^8 + A)^5 * eta(x^16 + A)^-2 * eta(x^32 + A)^-2 * eta(x^64 + A)^5 * eta(x^128 + A)^-2, n))}

Formula

Expansion of phi(x) * phi(x^4) * phi(x^32) in powers of x where phi() is a Ramanujan theta function.
a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Jun 08 2012

Extensions

More terms from Vladeta Jovovic, Jun 16 2002

A165564 Numbers which are not congruent numbers, i.e., positive integers which are not the area of any right triangle with rational sides.

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, 25, 26, 27, 32, 33, 35, 36, 40, 42, 43, 44, 48, 49, 50, 51, 57, 58, 59, 64, 66, 67, 68, 72, 73, 74, 75, 76, 81, 82, 83, 89, 90, 91, 97, 98, 99, 100, 104, 105, 106, 107, 108, 113, 114, 115, 121, 122, 123, 128, 129, 130
Offset: 1

Views

Author

Jose Brox (brox(AT)agt.cie.uma.es), Sep 22 2009

Keywords

Comments

It is known that every positive integer is the area of some triangle with rational sides. See the survey by Top and Yui. - Jonathan Sondow, Nov 15 2017

References

  • Alter, Ronald; Curtz, Thaddeus B.; Kubota, K. K. Remarks and results on congruent numbers. Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), pp. 27-35. Florida Atlantic Univ., Boca Raton, Fla., 1972. MR0349554 (50 #2047). - From N. J. A. Sloane, Apr 28 2012

Crossrefs

Complement of A003273.

Formula

Integers \ { A003273 }.

Extensions

Name corrected by Jonathan Sondow, Nov 15 2017

A194687 Least k such that the rank of the elliptic curve y^2 = x^3 - k^2*x is n, or -1 if no such k exists.

Original entry on oeis.org

1, 5, 34, 1254, 29274, 48272239, 6611719866
Offset: 0

Views

Author

Keywords

Comments

Fermat found a(0), Biling found a(1), and Wiman found a(2)-a(4). Rogers found upper bounds on a(5) and a(6) equal to their true value; Rathbun and an unknown author verified them as a(5) and a(6), respectively.
a(7) <= 797507543735, see Rogers 2004.

References

  • G. Billing, "Beiträge zur arithmetischen theorie der ebenen kubischen kurven geschlechteeins", Nova Acta Reg. Soc. Sc. Upsaliensis (4) 11 (1938), Nr. 1. Diss. 165 S.
  • N. Rogers, "Elliptic curves x^3 + y^2 = k with high rank", PhD Thesis in Mathematics, Harvard University (2004).
  • A. Wiman, "Über rationale Punkte auf Kurven y^2 = x(x^2-c^2)", Acta Math. 77 (1945), pp. 281-320.

Crossrefs

Programs

  • PARI
    r(n)=ellanalyticrank(ellinit([0,0,0,-n^2,0]))[1]
    rec=0;for(n=1,1e4,t=r(n);if(t>rec,rec=t;print("r("n") = "t)))

Extensions

Escape clause added to definition by N. J. A. Sloane, Jul 01 2024

A319510 Rank of elliptic curve y^2 = x^3 - n^2 * x.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Sep 24 2018

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = ellanalyticrank(ellinit([0, 0, 0, -n^2, 0]))[1]}

Formula

a(n) = A060952(n^2).
a(A003273(n)) > 0.
a(A194687(n)) = n.
Empirical: a(n) = a(4*n). - Jose Aranda, Jul 02 2024
Previous Showing 11-20 of 42 results. Next