cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A005541 Numbers k such that 8*3^k - 1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 10, 17, 50, 170, 184, 194, 209, 641, 1298, 4034, 5956, 7154, 9970, 35956, 42730, 132004, 190610
Offset: 1

Views

Author

Keywords

Comments

a(22) > 2*10^5. - Robert Price, Mar 16 2014
All terms are verified primes (i.e., not probable primes). - Robert Price, Mar 16 2014
896701 is a term, found in 2010 (see link). - Jeppe Stig Nielsen, Jul 31 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms from Douglas Burke (dburke(AT)nevada.edu)
0 prepended by Vincenzo Librandi, Sep 26 2012
a(18)-a(21) from Robert Price, Mar 16 2014

A163667 Numbers n such that sigma(n) = 9*phi(n).

Original entry on oeis.org

30, 264, 714, 3080, 3828, 6678, 10098, 12648, 21318, 22152, 24882, 44660, 49938, 61344, 86304, 94944, 118296, 129504, 130356, 147560, 183396, 199386, 201756, 207264, 216936, 248710, 258440, 265914, 275196, 290290, 321204, 505164, 628776, 706266, 706836
Offset: 1

Views

Author

Keywords

Comments

This sequence is a subsequence of A011257 because sqrt(phi(n)*sigma(n)) = 3*phi(n).
If 2^p-1 and 2*3^k-1 are two primes greater than 5 then n = 2^(p-2)*(2^p-1)*3^(k-1)*(2*3^k-1) (the product of two relatively prime terms 2^(p-2)*(2^p-1) and 3^(k-1)*(2*3^k-1) of A011257) is in the sequence. The proof is easy.

Crossrefs

Programs

  • Mathematica
    Select[Range[700000],DivisorSigma[1,# ]==9EulerPhi[ # ]&]
  • PARI
    is(n)=sigma(n)==9*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013

A111974 Primes of the form 2*3^k + 1.

Original entry on oeis.org

3, 7, 19, 163, 487, 1459, 39367, 86093443, 258280327, 411782264189299, 116299474006080119380780339, 3140085798164163223281069127, 84782316550432407028588866403, 20602102921755074907947094535687, 1910009901593650473786381403548828023839870277948686259673707683
Offset: 1

Views

Author

T. D. Noe, Aug 24 2005

Keywords

Crossrefs

Cf. A003306 (k such that 2*3^k + 1 is prime), A003307 (k such that 2*3^k - 1 is prime), A052919.

Programs

  • Mathematica
    Select[2*3^Range[100]+1, PrimeQ]

Formula

a(n) = A052919(A003306(n)+1). - Amiram Eldar, Jul 18 2025

Extensions

a(15) from Amiram Eldar, Jul 18 2025

A120378 Integers n such that 2*11^n-1 is prime.

Original entry on oeis.org

2, 8, 248, 2474, 2900, 6600, 24746, 105704
Offset: 1

Views

Author

Walter Kehowski, Jun 28 2006

Keywords

Comments

See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 241 is 181 in base 12.
a(9) > 2*10^5. - Robert Price, Nov 06 2015

Examples

			a(1)=2 since 2*11^2-1=241 is the first prime of this form.
		

Crossrefs

Programs

  • Maple
    for w to 1 do for k from 1 to 2000 do n:=2*11^k-1; if isprime(n) then printf("%d, %d",k,n) fi od od;
  • Mathematica
    Select[Range[0, 200000], PrimeQ[2*11^# - 1] &] (* Robert Price, Nov 06 2015 *)

Formula

a(n) = n-th integer k such that 2*11^k-1 is prime.

Extensions

More terms from Ryan Propper, Jan 14 2008
a(7)-a(8) from Robert Price, Nov 06 2015

A144650 Triangle read by rows where T(m,n) = 2m*n + m + n + 1.

Original entry on oeis.org

5, 8, 13, 11, 18, 25, 14, 23, 32, 41, 17, 28, 39, 50, 61, 20, 33, 46, 59, 72, 85, 23, 38, 53, 68, 83, 98, 113, 26, 43, 60, 77, 94, 111, 128, 145, 29, 48, 67, 86, 105, 124, 143, 162, 181, 32, 53, 74, 95, 116, 137, 158, 179, 200, 221, 35, 58, 81, 104, 127, 150, 173, 196, 219, 242, 265
Offset: 1

Views

Author

Vincenzo Librandi, Jan 13 2009

Keywords

Comments

First column: A016789, second column: A016885, third column: A017029, fourth column: A017221, fifth column: A017461. - Vincenzo Librandi, Nov 21 2012

Examples

			Triangle begins:
   5;
   8, 13;
  11, 18, 25;
  14, 23, 32, 41;
  17, 28, 39, 50,  61;
  20, 33, 46, 59,  72,  85;
  23, 38, 53, 68,  83,  98, 113;
  26, 43, 60, 77,  94, 111, 128, 145;
  29, 48, 67, 86, 105, 124, 143, 162, 181;
  32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
		

Crossrefs

Columns k: A016789 (k=1), A016885 (k=2), A017029 (k=3), A017221 (k=4), A017461 (k=5).

Programs

  • Magma
    [2*n*k + n + k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Mathematica
    T[n_,k_]:= 2 n*k + n + k + 1; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • SageMath
    flatten([[2*n*k+n+k+1 for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 14 2023

Formula

Sum_{n=1..m} T(m, n) = m*(2*m+3)*(m+1)/2 = A160378(n+1) (row sums). - R. J. Mathar, Jan 15 2009, Jan 05 2011
From G. C. Greubel, Oct 14 2023: (Start)
T(n, n) = A001844(n).
T(n, n-1) = A001105(n), n >= 2.
T(n, n-2) = A142463(n-1), n >= 3.
T(n, n-3) = (-1)*A147973(n+2), n >= 4.
Sum_{k=1..n} (-1)^k*T(n, k) = (-1)^n*A007742(floor((n+1)/2)).
G.f.: x*y*(5 - 2*x - 2*x*y - 2*x^2*y + x^2*y^2)/((1-x)^2*(1-x*y)^3). (End)

A120375 Integers k such that 2*5^k - 1 is prime.

Original entry on oeis.org

4, 6, 16, 24, 30, 54, 96, 178, 274, 1332, 2766, 3060, 4204, 17736, 190062, 223536, 260400, 683080
Offset: 1

Views

Author

Walter Kehowski, Jun 28 2006

Keywords

Comments

See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
a(16) > 2*10^5. - Robert Price, Mar 14 2015

Examples

			a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
		

Crossrefs

Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), this sequence (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), A158795 (b=7), A055558 (b=10), A120377 (b=11).
Cf. also A000043, A002958.

Programs

  • Magma
    [n: n in [0..2800] |IsPrime(2*5^n - 1)]; // Vincenzo Librandi, Sep 23 2018
  • Maple
    for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d ",k,n) fi od od;
  • Mathematica
    Select[Range[0, 100], PrimeQ[2*5^# - 1] &] (* Robert Price, Mar 14 2015 *)
  • PARI
    isok(k) = ispseudoprime(2*5^k-1); \\ Altug Alkan, Sep 22 2018
    

Formula

a(n) = 2*A002958(n).

Extensions

More terms from Ryan Propper, Mar 28 2007
a(14) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 02 2007
a(15) from Robert Price, Mar 14 2015
a(16)-a(18) from Jorge Coveiro and Tyler NeSmith, Jun 14 2020

A120377 Primes of the form 2*11^k-1.

Original entry on oeis.org

241, 428717761
Offset: 1

Views

Author

Walter Kehowski, Jun 28 2006

Keywords

Comments

See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 241 is 181 in base 12.
The values of k < 1000 that yield primes are 2, 8, 248. - T. D. Noe, Nov 16 2006

Examples

			a(1) = 241 since 2*11^2-1 = 241 is the first prime.
		

Crossrefs

Programs

  • Maple
    for w to 1 do for k from 1 to 2000 do n:=2*11^k-1; if isprime(n) then printf("%d, %d",k,n) fi od od;
  • Mathematica
    Select[2*11^Range[1000]-1, PrimeQ] (* T. D. Noe, Nov 16 2006 *)

Formula

a(n) = n-th number such that 2*11^k-1 that is prime for some k.
a(n) = 2*11^A120378(n)-1. - R. J. Mathar, Mar 06 2010

Extensions

Corrected by T. D. Noe, Nov 16 2006

A268061 Numbers k such that 7*8^k - 1 is prime.

Original entry on oeis.org

3, 7, 15, 59, 6127, 8703, 11619, 23403, 124299
Offset: 1

Views

Author

Robert Price, Jan 25 2016

Keywords

Comments

a(10) > 2*10^5.
Terms are A001771(n)/3 that are integers.

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.

Crossrefs

Cf. similar sequences of the form k*(k+1)^n-1: A003307 (k=2), ... (k=3), A046865 (k=4), A079906 (k=5), A046866 (k=6), this sequence (k=7), ... (k=8), A056725 (k=9), A046867 (k=10), A079907 (k=11).

Programs

  • Mathematica
    Select[Range[0, 200000], PrimeQ[7*8^# - 1] &]
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(7*8^n-1), print1(n, ", "))) \\ Altug Alkan, Jan 25 2016

A119591 Least k such that 2*n^k - 1 is prime.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1
Offset: 2

Views

Author

Pierre CAMI, Jun 01 2006

Keywords

Comments

From Eric Chen, Jun 01 2015: (Start)
Conjecture: a(n) is defined for all n.
a(303) > 10000, a(304)..a(360) = {1, 2, 11, 1, 990, 1, 1, 2, 2, 4, 74, 5, 1, 10, 6, 6, 4, 1, 1, 2, 1, 9, 12, 1, 80, 2, 1, 1, 2, 14, 3, 2, 3, 1, 12, 1, 60, 36, 1, 8, 4, 34, 1, 522, 3, 15, 14, 1, 6, 2, 3, 1, 4, 5, 4, 10, 1}.
a(n) = 1 if and only if n is in A006254. (End)
From Eric Chen, Sep 16 2021: (Start)
Now a(303) is known to be 40174, also other terms > 10000: a(383) = 20956, a(515) = 58466, a(522) = 62288, a(578) = 129468, a(581) > 400000, a(590) = 15526, a(647) = 21576, a(662) = 16590, a(698) = 127558, a(704) = 62034, see the a-file and the references.
a(n) = 2 if and only if n is in A066049 but not in A006254.
a(n) = 3 if and only if n is in A214289 but not in A006254 or A066049. (End)

Crossrefs

Numbers r such that 2*k^r-1 is prime: A090748 (k=2), A003307 (k=3), A146768 (k=4), A120375 (k=5), A057472 (k=6), A002959 (k=7), ... (k=8), ... (k=9), A002957 (k=10), A120378 (k=11), ... (k=12), A174153 (k=13), A273517 (k=14), ... (k=15), ... (k=16), A193177 (k=17), A002958 (k=25).

Programs

  • Mathematica
    f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)
  • PARI
    a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015

Formula

From Eric Chen, Sep 16 2021: (Start)
a(6*n) = A098873(n).
a(2^n) = A279095(n).
a(A006254(n)) = 1.
a(A066049(n)) <= 2.
a(A214289(n)) <= 3. (End)

Extensions

Corrected and extended by Ray Chandler, Jun 08 2006

A245241 Integers n such that 6 * 7^n + 1 is prime.

Original entry on oeis.org

0, 1, 4, 9, 99, 412, 2633, 5093, 5632, 28233, 36780, 47084, 53572
Offset: 1

Views

Author

Robert Price, Nov 14 2014

Keywords

Comments

All terms correspond to verified primes, that is, not merely probable primes.
a(14) > 2*10^5.

Examples

			4 is in this sequence because 6 * 7^4 + 1 = 14407, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,200000], PrimeQ[6 * 7^# + 1] &]
Previous Showing 11-20 of 32 results. Next