cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A004805 Numbers that are the sum of 5 positive 10th powers.

Original entry on oeis.org

5, 1028, 2051, 3074, 4097, 5120, 59053, 60076, 61099, 62122, 63145, 118101, 119124, 120147, 121170, 177149, 178172, 179195, 236197, 237220, 295245, 1048580, 1049603, 1050626, 1051649, 1052672, 1107628, 1108651, 1109674, 1110697, 1166676, 1167699, 1168722, 1225724, 1226747
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
10352707051 is in the sequence as 10352707051 = 1^10 + 5^10 + 6^10 + 7^10 + 10^10.
59130893253 is in the sequence as 59130893253 = 7^10 + 9^10 + 9^10 + 11^10 + 11^10.
69011865378 is in the sequence as 69011865378 = 6^10 + 6^10 + 9^10 + 9^10 + 12^10. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Mathematica
    k = 5; p = 10; amax = 2*10^6; bmax = amax^(1/p) // Ceiling; Clear[b]; b[0] = 1; Select[Table[Total[Array[b, k]^p], {b[1], b[0], bmax}, Evaluate[ Sequence @@ Table[{b[j], b[j - 1], bmax}, {j, 1, k}]]] //Flatten // Union, # <= amax&] (* Jean-François Alcover, Jul 19 2017 *)

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A004814 Numbers that are the sum of 3 positive 11th powers.

Original entry on oeis.org

3, 2050, 4097, 6144, 177149, 179196, 181243, 354295, 356342, 531441, 4194306, 4196353, 4198400, 4371452, 4373499, 4548598, 8388609, 8390656, 8565755, 12582912, 48828127, 48830174, 48832221, 49005273, 49007320, 49182419, 53022430
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
204800049005272 is in the sequence as 204800049005272 = 3^11 + 5^11 + 20^11.
2518268235958260 is in the sequence as 2518268235958260 = 16^11 + 19^11 + 25^11.
3786934745885995 is in the sequence as 3786934745885995 = 10^11 + 19^11 + 26^11. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A344644 Numbers that are the sum of four fifth powers in two or more ways.

Original entry on oeis.org

51445, 876733, 1646240, 3558289, 4062500, 5687000, 7962869, 8227494, 9792364, 9924675, 10908544, 12501135, 15249850, 18317994, 18804544, 20611151, 20983875, 21297837, 23944908, 24201342, 24598407, 27806867, 28055456, 29480343, 31584102, 32557875, 32814683, 35469555, 40882844, 45177175
Offset: 1

Views

Author

David Consiglio, Jr., May 25 2021

Keywords

Examples

			1646240 is a term because 1646240 = 9^5 + 15^5 + 15^5 + 15^5 = 11^5 + 13^5 + 13^5 + 17^5
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 500)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 2])
    for x in range(len(rets)):
        print(rets[x])

A344642 Numbers that are the sum of four fifth powers in exactly one way.

Original entry on oeis.org

4, 35, 66, 97, 128, 246, 277, 308, 339, 488, 519, 550, 730, 761, 972, 1027, 1058, 1089, 1120, 1269, 1300, 1331, 1511, 1542, 1753, 2050, 2081, 2112, 2292, 2323, 2534, 3073, 3104, 3128, 3159, 3190, 3221, 3315, 3370, 3401, 3432, 3612, 3643, 3854, 4096, 4151, 4182, 4213, 4393, 4424, 4635, 5174, 5205, 5416, 6197, 6252
Offset: 1

Views

Author

David Consiglio, Jr., May 25 2021

Keywords

Comments

Differs from A003349 at term 270 because 51445 = 4^5 + 8^5 + 8^5 + 8^5 = 6^5 + 7^5 + 7^5 + 9^5

Examples

			66 is a term because 66 = 1^5 + 1^5 + 2^5 + 2^5
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 500)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 1])
    for x in range(len(rets)):
        print(rets[x])

A003386 Numbers that are the sum of 8 nonzero 8th powers.

Original entry on oeis.org

8, 263, 518, 773, 1028, 1283, 1538, 1793, 2048, 6568, 6823, 7078, 7333, 7588, 7843, 8098, 8353, 13128, 13383, 13638, 13893, 14148, 14403, 14658, 19688, 19943, 20198, 20453, 20708, 20963, 26248, 26503, 26758, 27013, 27268, 32808, 33063, 33318, 33573
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
9534597 is in the sequence as 9534597 = 2^8 + 3^8 + 3^8 + 3^8 + 5^8 + 6^8 + 6^8 + 7^8.
13209988 is in the sequence as 13209988 = 1^8 + 1^8 + 2^8 + 2^8 + 2^8 + 6^8 + 7^8 + 7^8.
19046628 is in the sequence as 19046628 = 2^8 + 2^8 + 3^8 + 4^8 + 6^8 + 7^8 + 7^8 + 7^8. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Mathematica
    M = 92646056; m = M^(1/8) // Ceiling; Reap[
    For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
    For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
    For[g = f, g <= m, g++, For[h = g, h <= m, h++,
    s = a^8 + b^8 + c^8 + d^8 + e^8 + f^8 + g^8 + h^8;
    If[s <= M, Sow[s]]]]]]]]]]][[2, 1]] // Union (* Jean-François Alcover, Dec 01 2020 *)

Extensions

b-file checked by R. J. Mathar, Aug 01 2020
Incorrect program removed by David A. Corneth, Aug 01 2020

A123294 Sum of 13 positive 5th powers.

Original entry on oeis.org

13, 44, 75, 106, 137, 168, 199, 230, 255, 261, 286, 292, 317, 323, 348, 354, 379, 385, 410, 416, 441, 472, 497, 503, 528, 534, 559, 565, 590, 596, 621, 627, 652, 683, 714, 739, 745, 770, 776, 801, 807, 832, 838, 863, 894, 925, 956, 981, 987, 1012, 1018, 1036
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Up to 416 = 13*(2^5) this sequence is identical to x+1 for x in A003357 Sum of 12 positive 5th powers. Primes in this sequence (13, 137, 199, 317, ...) are A123299. As proved by J.-R. Chen in 1964, g(5) = 37, so every positive integer can be written as the sum of no more than 37 positive 5th powers. G(5) <= 17, bounding the least integer G(5) such that every positive integer beyond a certain point (i.e., all but a finite number) is the sum of G(5) 5th powers.

Examples

			a(1) = 13 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 44 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5.
a(9) = 255 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5.
a(11) = 286 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5
		

Crossrefs

Programs

  • Mathematica
    up = 1500; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 13}]; a (* Giovanni Resta, Jun 12 2016 *)

Formula

Extensions

Two missing terms and more terms from Giovanni Resta, Jun 12 2016

A123295 Sum of 14 positive 5th powers.

Original entry on oeis.org

14, 45, 76, 107, 138, 169, 200, 231, 256, 262, 287, 293, 318, 324, 349, 355, 380, 386, 411, 417, 442, 448, 473, 498, 504, 529, 535, 560, 566, 591, 597, 622, 628, 653, 659, 684, 715, 740, 746, 771, 777, 802, 808, 833, 839, 864, 870, 895, 926, 957, 982, 988
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Up to 417 = 13*(2^5) + 1 this sequence is identical to x+2 for x in A003357 Sum of 12 positive 5th powers. Primes in this sequence (107, 293, 349, 653, ...) are A123300. As proved by J.-R. Chen in 1964, g(5) = 37, so every positive integer can be written as the sum of no more than 37 positive 5th powers. G(5) <= 17, bounding the least integer G(5) such that every positive integer beyond a certain point (i.e., all but a finite number) is the sum of G(5) 5th powers.

Examples

			a(1) = 14 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 45 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5.
a(9) = 256 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5.
a(11) = 287 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5
		

Crossrefs

Programs

  • Mathematica
    up = 1000; q = Range[up^(1/5)]^5; a ={0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a=b, {k, 14}]; a (* Giovanni Resta, Jun 12 2016 *)

Formula

Extensions

5 missing terms and more terms from Giovanni Resta, Jun 12 2016

A123299 Prime sums of 13 positive 5th powers.

Original entry on oeis.org

13, 137, 199, 317, 379, 503, 683, 739, 863, 1049, 1129, 1223, 1229, 1409, 1433, 1471, 1613, 1619, 1831, 1949, 1979, 2011, 2221, 2339, 2543, 2549, 2729, 2791, 2909, 2917, 2971, 3089, 3137, 3299, 3307, 3323, 3331, 3361, 3511, 3541, 3659, 3863, 3877, 3931, 4049
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Examples

			a(1) = 13 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 137 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 199 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 317 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 4100; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 13}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 12 2016 *)

Formula

A000040 INTERSECTION A123299.

Extensions

a(10)-a(45) from Giovanni Resta, Jun 12 2016

A123300 Prime sums of 14 positive 5th powers.

Original entry on oeis.org

107, 293, 349, 653, 659, 839, 1013, 1019, 1223, 1279, 1409, 1559, 1583, 1621, 1801, 1831, 1949, 2011, 2129, 2153, 2309, 2333, 2339, 2347, 2371, 2551, 2699, 2707, 2731, 2879, 2917, 3083, 3121, 3169, 3191, 3301, 3331, 3449, 3457, 3511, 3541, 3659, 3691, 3761, 3847, 4019, 4027, 4051
Offset: 1

Views

Author

Jonathan Vos Post, Sep 25 2006

Keywords

Examples

			a(1) = 107 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5.
a(2) = 293 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 349 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(4) = 653 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 5000; q = Range[up^(1/5)]^5; a={0}; Do[b = Select[Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 14}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 12 2016 *)

Formula

A000040 INTERSECTION A123295.

Extensions

More terms from Harvey P. Dale, Jan 01 2015
4 missing terms from Giovanni Resta, Jun 12 2016

A123033 Prime sums of 4 positive 5th powers.

Original entry on oeis.org

97, 277, 761, 1511, 1753, 2081, 3221, 3643, 6197, 7517, 7841, 8263, 10067, 10399, 10903, 16903, 25639, 32771, 32833, 33013, 33647, 33889, 35059, 36137, 39019, 40577, 40819, 48563, 49639, 57383, 59083, 59567, 60317, 61129, 62207, 63199, 66383, 66889, 100003
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either one even and 3 odd terms (as with 1^5 + 1^5 + 2^5 + 3^5 and 761 = 2^5 + 3^5 + 3^5 + 3^5) or three even terms and one odd term (as with 97 = 1^5 + 2^5 + 2^5 + 2^5 and 3221 = 2^5 + 2^5 + 2^5 + 5^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 97 = 1^5 + 2^5 + 2^5 + 2^5.
a(2) = 277 = 1^5 + 1^5 + 2^5 + 3^5.
a(3) = 761 = 2^5 + 3^5 + 3^5 + 3^5.
a(7) = 3221 = 2^5 + 2^5 + 2^5 + 5^5.
		

Crossrefs

Programs

  • Mathematica
    up = 10^6; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@Table[e + a, {e, q}], # <= up &]; a = b, {k, 4}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 13 2016 *)

Formula

A000040 INTERSECTION A003349.

Extensions

More terms from Alois P. Heinz, Aug 12 2015
Previous Showing 31-40 of 48 results. Next