A005610
Number of Boolean functions realized by cascades of n gates.
Original entry on oeis.org
2, 14, 86, 518, 3110, 18662, 111974, 671846, 4031078, 24186470, 145118822, 870712934, 5224277606, 31345665638, 188073993830, 1128443962982, 6770663777894, 40623982667366, 243743896004198, 1462463376025190
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. T. Butler, Fanout-free networks of multivalued gates, Proc. Internat. Symposium Multiple-Valued Logic, Charlotte, NC, 1977, IEEE Press, NY (1977), 39-46. (Annotated scanned copy)
- J. T. Butler, Letter to N. J. A. Sloane, Dec. 1978.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (7,-6)
-
A005610:=-2*(-7+6*z)/(6*z-1)/(z-1); # conjectured by Simon Plouffe in his 1992 dissertation; gives the sequence apart from the initial 2
-
Table[(2/5) (6 6^(n - 1) - 1), {n, 1, 30}] (* Bruno Berselli, Nov 13 2018 *)
A016200
Expansion of g.f. 1/((1-x)*(1-2*x)*(1-6*x)).
Original entry on oeis.org
1, 9, 61, 381, 2317, 13965, 83917, 503757, 3023053, 18139341, 108838093, 653032653, 3918204109, 23509241037, 141055478989, 846332939469, 5077997767885, 30467986869453, 182807921741005, 1096847531494605, 6581085191064781, 39486511150582989, 236919066911886541, 1421514401488096461
Offset: 0
-
List([0..100],n->(9*6^n-5*2^n+1)/5); # Muniru A Asiru, Feb 06 2018
-
seq((9*6^n-5*2^n+1)/5, n=0..100); # Muniru A Asiru, Feb 06 2018
-
CoefficientList[Series[1/((1-x)(1-2x)(1-6x)),{x,0,30}],x] (* or *) LinearRecurrence[{9,-20,12},{1,9,61},30] (* Harvey P. Dale, Aug 23 2025 *)
A024346
Expansion of 1/((1-x)*(1-6*x)*(1-9*x)*(1-11*x)).
Original entry on oeis.org
1, 27, 484, 7266, 98959, 1269177, 15642586, 187539120, 2204181925, 25529358855, 292445725936, 3321943348542, 37489352241979, 420930326166741, 4707254688375814, 52473555698990412, 583456285162491601
Offset: 0
-
R:=PowerSeriesRing(Integers(), 25); Coefficients(R!(1/((1-x)*(1-6*x)*(1-9*x)*(1-11*x)))); // Vincenzo Librandi, Jul 16 2013
-
I:=[1,27,484,7266]; [n le 4 select I[n] else 27*Self(n-1)-245*Self(n-2)+813*Self(n-3)-594*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 16 2013
-
CoefficientList[Series[1/((1-x)(1-6x)(1-9x)(1-11x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 16 2013 *)
LinearRecurrence[{27,-245,813,-594},{1,27,484,7266},20] (* Harvey P. Dale, Oct 13 2016 *)
-
a(n) = (12*11^(n+3) - 25*9^(n+3) + 16*6^(n+3) - 3)/1200; \\ Joerg Arndt, Aug 13 2013
-
[(4*11^(n+3) -75*9^(n+2) +32*6^(n+2) -1)/400 for n in (0..20)] # G. C. Greubel, Jan 30 2022
A105281
a(0)=0; a(n) = 6*a(n-1) + 6.
Original entry on oeis.org
0, 6, 42, 258, 1554, 9330, 55986, 335922, 2015538, 12093234, 72559410, 435356466, 2612138802, 15672832818, 94036996914, 564221981490, 3385331888946, 20311991333682, 121871948002098, 731231688012594, 4387390128075570, 26324340768453426, 157946044610720562
Offset: 0
-
a:=n->add(6^j,j=1..n): seq(a(n),n=0..30); # Zerinvary Lajos, Oct 03 2007
-
NestList[6#+6&,0,30] (* Harvey P. Dale, Jul 24 2012 *)
-
a(n)=if(n<0,0, (6^n-1)*6/5)
A218727
a(n) = (24^n - 1)/23.
Original entry on oeis.org
0, 1, 25, 601, 14425, 346201, 8308825, 199411801, 4785883225, 114861197401, 2756668737625, 66160049703001, 1587841192872025, 38108188628928601, 914596527094286425, 21950316650262874201, 526807599606308980825, 12643382390551415539801, 303441177373233972955225
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 25*Self(n-1)-24*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{25, -24}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218727(n):=(24^n-1)/23$
makelist(A218727(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218727(n)=24^n\23
A218729
a(n) = (26^n - 1)/25.
Original entry on oeis.org
0, 1, 27, 703, 18279, 475255, 12356631, 321272407, 8353082583, 217180147159, 5646683826135, 146813779479511, 3817158266467287, 99246114928149463, 2580398988131886039, 67090373691429037015, 1744349715977154962391, 45353092615406029022167, 1179180408000556754576343
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 27*Self(n-1)-26*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{27, -26}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218729(n):=(26^n-1)/25$
makelist(A218729(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218729(n)=26^n\25
A218730
a(n) = (27^n - 1)/26.
Original entry on oeis.org
0, 1, 28, 757, 20440, 551881, 14900788, 402321277, 10862674480, 293292210961, 7918889695948, 213810021790597, 5772870588346120, 155867505885345241, 4208422658904321508, 113627411790416680717, 3067940118341250379360, 82834383195213760242721, 2236528346270771526553468
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 28*Self(n-1)-27*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{28, -27}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218730(n):=(27^n-1)/26$
makelist(A218730(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
a(n)=27^n\26
A218731
a(n) = (28^n - 1)/27.
Original entry on oeis.org
0, 1, 29, 813, 22765, 637421, 17847789, 499738093, 13992666605, 391794664941, 10970250618349, 307167017313773, 8600676484785645, 240818941573998061, 6742930364071945709, 188802050194014479853, 5286457405432405435885, 148020807352107352204781, 4144582605859005861733869
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 29*Self(n-1)-28*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{29, -28}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218731(n):=(28^n-1)/27$
makelist(A218731(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218731(n)=28^n\27
A218739
a(n) = (36^n - 1)/35.
Original entry on oeis.org
0, 1, 37, 1333, 47989, 1727605, 62193781, 2238976117, 80603140213, 2901713047669, 104461669716085, 3760620109779061, 135382323952046197, 4873763662273663093, 175455491841851871349, 6316397706306667368565, 227390317427040025268341, 8186051427373440909660277
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 37*Self(n-1)-36*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{37, -36}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
Join[{0},Accumulate[36^Range[0,20]]] (* Harvey P. Dale, Jun 03 2015 *)
-
A218739(n):=(36^n-1)/35$
makelist(A218739(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218739(n)=36^n\35
A218741
a(n) = (38^n - 1)/37.
Original entry on oeis.org
0, 1, 39, 1483, 56355, 2141491, 81376659, 3092313043, 117507895635, 4465300034131, 169681401296979, 6447893249285203, 245019943472837715, 9310757851967833171, 353808798374777660499, 13444734338241551098963, 510899904853178941760595, 19414196384420799786902611
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 39*Self(n-1) - 38*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{39, -38}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218741(n):=(38^n-1)/37$
makelist(A218741(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218741(n)=38^n\37
Comments