cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A108056 Numbers of the form (7^i)*(13^j).

Original entry on oeis.org

1, 7, 13, 49, 91, 169, 343, 637, 1183, 2197, 2401, 4459, 8281, 15379, 16807, 28561, 31213, 57967, 107653, 117649, 199927, 218491, 371293, 405769, 753571, 823543, 1399489, 1529437, 2599051, 2840383, 4826809, 5274997, 5764801, 9796423, 10706059, 18193357, 19882681
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 02 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^7; Flatten[Table[7^i*13^j, {i, 0, Log[7, n]}, {j, 0, Log[13, n/7^i]}]] // Sort (* Amiram Eldar, Sep 23 2020 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=7));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A108056(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,7)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

Sum_{n>=1} 1/a(n) = (7*13)/((7-1)*(13-1)) = 91/72. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(7)*log(13)*n)) / sqrt(91). - Vaclav Kotesovec, Sep 23 2020

Extensions

More terms from Amiram Eldar, Sep 23 2020

A108347 Numbers of the form (3^i)*(5^j)*(7^k), with i, j, k >= 0.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 21, 25, 27, 35, 45, 49, 63, 75, 81, 105, 125, 135, 147, 175, 189, 225, 243, 245, 315, 343, 375, 405, 441, 525, 567, 625, 675, 729, 735, 875, 945, 1029, 1125, 1215, 1225, 1323, 1575, 1701, 1715, 1875, 2025, 2187, 2205, 2401, 2625, 2835, 3087
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jul 01 2005

Keywords

Comments

The Heinz numbers of the partitions into parts 2,3, and 4 (including the number 1, the Heinz number of the empty partition). We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [2,3,3,4] the Heinz number is 3*5*5*7 = 525; it is in the sequence. - Emeric Deutsch , May 21 2015
Numbers m | 105^e with integer e >= 0. - Michael De Vlieger, Aug 22 2019

Crossrefs

Programs

  • Magma
    [n: n in [1..4000] | PrimeDivisors(n) subset [3,5,7]]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    with(numtheory): S := {}: for j to 3100 do if `subset`(factorset(j), {3, 5, 7}) then S := `union`(S, {j}) else end if end do: S; # Emeric Deutsch, May 21 2015
    # alternative
    isA108347 := proc(n)
          if n = 1 then
            true;
        else
            return (numtheory[factorset](n) minus {3, 5, 7} = {} );
        end if;
    end proc:
    A108347 := proc(n)
         option remember;
         if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA108347(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A108347(n),n=1..80); # R. J. Mathar, Jun 06 2024
  • Mathematica
    With[{n = 3087}, Sort@ Flatten@ Table[3^i * 5^j * 7^k, {i, 0, Log[3, n]}, {j, 0, Log[5, n/2^i]}, {k, 0, Log[7, n/(3^i*5^j)]}]] (* Michael De Vlieger, Aug 22 2019 *)
  • Python
    from sympy import integer_log
    def A108347(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,7)[0]+1):
                for j in range(integer_log(m:=x//7**i,5)[0]+1):
                    c -= integer_log(m//5**j,3)[0]+1
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = (3*5*7)/((3-1)*(5-1)*(7-1)) = 35/16. - Amiram Eldar, Sep 22 2020
a(n) ~ exp((6*log(3)*log(5)*log(7)*n)^(1/3)) / sqrt(105). - Vaclav Kotesovec, Sep 23 2020

A025626 Numbers of form 6^i*7^j, with i, j >= 0.

Original entry on oeis.org

1, 6, 7, 36, 42, 49, 216, 252, 294, 343, 1296, 1512, 1764, 2058, 2401, 7776, 9072, 10584, 12348, 14406, 16807, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 279936, 326592, 381024, 444528, 518616, 605052, 705894, 823543, 1679616, 1959552
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*7^j, {i, 0, Log[6, n]}, {j, 0, Log[7, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*7)/((6-1)*(7-1)) = 7/5. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(6)*log(7)*n)) / sqrt(42). - Vaclav Kotesovec, Sep 25 2020
a(n) = 6^A025660(n) * 7^A025668(n). - R. J. Mathar, Jul 06 2025

A108201 Numbers of the form (5^i)*(12^j), with i, j >= 0.

Original entry on oeis.org

1, 5, 12, 25, 60, 125, 144, 300, 625, 720, 1500, 1728, 3125, 3600, 7500, 8640, 15625, 18000, 20736, 37500, 43200, 78125, 90000, 103680, 187500, 216000, 248832, 390625, 450000, 518400, 937500, 1080000, 1244160, 1953125, 2250000, 2592000
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 15 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Take[Union[5^First[#] 12^Last[#]&/@Tuples[Range[0,20],2]],50] (* Harvey P. Dale, Mar 23 2012 *)

Formula

Sum_{n>=1} 1/a(n) = 15/11. - Amiram Eldar, Mar 29 2025

A108513 Numbers of the form (2^i)*(5^j)*(7^k), with i, j, k >= 0.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 25, 28, 32, 35, 40, 49, 50, 56, 64, 70, 80, 98, 100, 112, 125, 128, 140, 160, 175, 196, 200, 224, 245, 250, 256, 280, 320, 343, 350, 392, 400, 448, 490, 500, 512, 560, 625, 640, 686, 700, 784, 800, 875, 896, 980, 1000, 1024, 1120
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jul 05 2005

Keywords

Comments

Numbers m | 70^e with integer e >= 0. - Michael De Vlieger, Aug 22 2019

Crossrefs

Programs

  • Mathematica
    With[{n = 1120}, Sort@ Flatten@ Table[2^i * 5^j * 7^k, {i, 0, Log2@ n}, {j, 0, Log[5, n/2^i]}, {k, 0, Log[7, n/(2^i*5^j)]}]] (* Michael De Vlieger, Aug 22 2019 *)
  • PARI
    isok(n) = (n/(2^valuation(n,2)*5^valuation(n,5)*7^valuation(n,7)) == 1); \\ Michel Marcus, Oct 01 2013

Formula

Sum_{n>=1} 1/a(n) = (2*5*7)/((2-1)*(5-1)*(7-1)) = 35/12. - Amiram Eldar, Sep 23 2020
a(n) ~ exp((6*log(2)*log(5)*log(7)*n)^(1/3)) / sqrt(70). - Vaclav Kotesovec, Sep 23 2020

A307589 Numbers m such that 1 < gcd(m, 35) < m and m does not divide 35^e for e >= 0.

Original entry on oeis.org

10, 14, 15, 20, 21, 28, 30, 40, 42, 45, 50, 55, 56, 60, 63, 65, 70, 75, 77, 80, 84, 85, 90, 91, 95, 98, 100, 105, 110, 112, 115, 119, 120, 126, 130, 133, 135, 140, 145, 147, 150, 154, 155, 160, 161, 165, 168, 170, 180, 182, 185, 189, 190, 195, 196, 200, 203, 205
Offset: 1

Views

Author

Michael De Vlieger, Aug 22 2019

Keywords

Comments

Complement of the union of A003595 and A235933.
Analogous to A081062 and A105115 for terms 1 and 2 of A120944. This sequence applies to A120944(6) = 35.

Examples

			10 is in the sequence since gcd(10, 35) = 5 and 10 does not divide 35^e with integer e >= 0.
2 is not in the sequence since 2 is coprime to 35.
7 is not in the sequence since 7 | 35.
25 is not in the sequence since 25 | 35^2.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 205, k = 35}, Select[Range@ nn, And[1 < GCD[#, k] < #, PowerMod[k, Floor@ Log2@ nn, #] != 0] &]]
  • PARI
    is(n)=gcd(n,35)>1 && n/5^valuation(n,5)/7^valuation(n,7)>1 \\ Charles R Greathouse IV, Sep 07 2022

Formula

a(n) = 35n/11 + O(log^2 n). - Charles R Greathouse IV, Sep 07 2022

A025652 Exponent of 5 (value of i) in n-th number of form 5^i*7^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 6, 0, 5, 4, 3, 2, 7, 1, 6, 0, 5, 4, 3, 8, 2, 7, 1, 6, 0, 5, 4, 9, 3, 8, 2, 7, 1, 6, 0, 5, 10, 4, 9, 3, 8, 2, 7, 1, 6, 0, 11, 5, 10, 4, 9, 3, 8, 2, 7, 1, 12, 6, 0, 11, 5, 10, 4, 9, 3, 8, 2, 13, 7, 1, 12, 6, 0, 11, 5, 10, 4, 9, 3, 14, 8, 2, 13, 7, 1, 12, 6
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A003595.

A025667 Exponent of 7 (value of j) in n-th number of form 5^i*7^j.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 5, 1, 2, 3, 4, 0, 5, 1, 6, 2, 3, 4, 0, 5, 1, 6, 2, 7, 3, 4, 0, 5, 1, 6, 2, 7, 3, 8, 4, 0, 5, 1, 6, 2, 7, 3, 8, 4, 9, 0, 5, 1, 6, 2, 7, 3, 8, 4, 9, 0, 5, 10, 1, 6, 2, 7, 3, 8, 4, 9, 0, 5, 10, 1, 6, 11, 2, 7, 3, 8, 4, 9, 0, 5, 10, 1, 6, 11, 2, 7, 12, 3, 8, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A003595.

A036320 Composite numbers whose prime factors contain no digits other than 5 and 7.

Original entry on oeis.org

25, 35, 49, 125, 175, 245, 343, 625, 875, 1225, 1715, 2401, 2785, 2885, 3125, 3785, 3899, 4039, 4375, 5299, 6125, 8575, 12005, 13925, 14425, 15625, 16807, 18925, 19495, 20195, 21875, 26495, 27293, 27785, 28273, 30625, 37093, 37885, 38785
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020467. - David A. Corneth, Oct 09 2020

Crossrefs

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020467} (p/(p - 1)) - Sum_{p in A020467} 1/p - 1 = 0.1179595738... . - Amiram Eldar, May 22 2022

A057490 Numbers k that divide 8^k + 7^k + 6^k + 5^k + 4^k + 3^k + 2^k.

Original entry on oeis.org

1, 5, 7, 25, 35, 49, 125, 175, 245, 301, 343, 455, 625, 875, 1225, 1295, 1435, 1505, 1715, 1765, 2107, 2191, 2401, 3125, 4375, 6125, 7525, 8575, 10535, 11375, 12005, 12943, 14063, 14749, 15625, 16807, 21875, 22295, 30625, 35875, 37625, 42875, 52675, 60025, 64715, 70315, 73745, 78125, 80375, 84035, 90601, 93275
Offset: 1

Views

Author

Robert G. Wilson v, Sep 22 2000

Keywords

Comments

Contains A003595. The first term not in A003595 is 301. Is 1 the only term not divisible by 5 or 7? - Robert Israel, Feb 22 2017
No term is divisible by 3. 5 and 7 are the only primes in this sequence. - Altug Alkan, Feb 23 2017

Crossrefs

Cf. A003595.

Programs

  • Maple
    select(t -> add(i &^ t, i=2..8) mod t = 0, [$1..10^6]); # Robert Israel, Feb 22 2017
  • Mathematica
    Select[ Range[ 10^5 ], Mod[ PowerMod[ 8, #, # ] + PowerMod[ 7, #, # ] + PowerMod[ 6, #, # ] + PowerMod[ 5, #, # ] + PowerMod[ 4, #, # ] + PowerMod[ 3, #, # ] + PowerMod[ 2, #, # ], # ] == 0 & ]
    Select[Range[100000],Mod[Total[PowerMod[Range[2,8],#,#]],#]==0&] (* Harvey P. Dale, Jul 28 2021 *)
Previous Showing 11-20 of 20 results.