cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A108687 Numbers of the form (9^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 9, 11, 81, 99, 121, 729, 891, 1089, 1331, 6561, 8019, 9801, 11979, 14641, 59049, 72171, 88209, 107811, 131769, 161051, 531441, 649539, 793881, 970299, 1185921, 1449459, 1771561, 4782969, 5845851, 7144929, 8732691, 10673289, 13045131
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 17 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108687 n = a108687_list !! (n-1)
    a108687_list = f $ singleton (1,0,0) where
       f s = y : f (insert (9 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Mathematica
    f[upto_]:=With[{max9=Floor[Log[9,upto]],max11=Floor[Log[11,upto]]}, Select[Union[Times@@{9^First[#],11^Last[#]}&/@Tuples[{Range[0, max9], Range[0, max11]}]], #<=upto&]]; f[14000000]  (* Harvey P. Dale, Mar 11 2011 *)
  • Python
    from sympy import integer_log
    def A108687(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//11**i,9)[0]+1 for i in range(integer_log(x,11)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (9*11)/((9-1)*(11-1)) = 99/80. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(9)*log(11)*n)) / sqrt(99). - Vaclav Kotesovec, Sep 24 2020

A025635 Numbers of form 9^i*10^j, with i, j >= 0.

Original entry on oeis.org

1, 9, 10, 81, 90, 100, 729, 810, 900, 1000, 6561, 7290, 8100, 9000, 10000, 59049, 65610, 72900, 81000, 90000, 100000, 531441, 590490, 656100, 729000, 810000, 900000, 1000000, 4782969, 5314410, 5904900, 6561000, 7290000, 8100000, 9000000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a025635 n = a025635_list !! (n-1)
    a025635_list = f $ singleton (1,0,0) where
       f s = y : f (insert (9 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Mathematica
    With[{max = 10^7}, Flatten[Table[9^i*10^j, {i, 0, Log[9, max]}, {j, 0, Log[10, max/9^i]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=9)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
    
  • Python
    from sympy import integer_log
    def A025635(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//10**i,9)[0]+1 for i in range(integer_log(x,10)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = 5/4. - Amiram Eldar, Mar 29 2025
a(n) = 9^A025683(n) * 10^A025691(n). - R. J. Mathar, Jul 06 2025

A107466 Numbers of the form (5^i)*(13^j).

Original entry on oeis.org

1, 5, 13, 25, 65, 125, 169, 325, 625, 845, 1625, 2197, 3125, 4225, 8125, 10985, 15625, 21125, 28561, 40625, 54925, 78125, 105625, 142805, 203125, 274625, 371293, 390625, 528125, 714025, 1015625, 1373125, 1856465, 1953125, 2640625
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), May 27 2005

Keywords

Crossrefs

Programs

  • Mathematica
    mx = 2700000; Sort@ Flatten@ Table[5^i*13^j, {i, 0, Log[5, mx]}, {j, 0, Log[13, mx/5^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=5));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A107466(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,5)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (5*13)/((5-1)*(13-1)) = 65/48. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(5)*log(13)*n)) / sqrt(65). - Vaclav Kotesovec, Sep 23 2020

A108698 Numbers of the form (6^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 6, 11, 36, 66, 121, 216, 396, 726, 1296, 1331, 2376, 4356, 7776, 7986, 14256, 14641, 26136, 46656, 47916, 85536, 87846, 156816, 161051, 279936, 287496, 513216, 527076, 940896, 966306, 1679616, 1724976, 1771561, 3079296, 3162456
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 19 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108698 n = a108698_list !! (n-1)
    a108698_list = f $ singleton (1,0,0) where
       f s = y : f (insert (6 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^6; Flatten[Table[6^i*11^j, {i, 0, Log[6, n]}, {j, 0, Log[11, n/6^i]}]] // Sort (* Amiram Eldar, Oct 07 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*11)/((6-1)*(11-1)) = 33/25. - Amiram Eldar, Oct 07 2020
a(n) ~ exp(sqrt(2*log(6)*log(11)*n)) / sqrt(66). - Vaclav Kotesovec, Oct 07 2020

A108056 Numbers of the form (7^i)*(13^j).

Original entry on oeis.org

1, 7, 13, 49, 91, 169, 343, 637, 1183, 2197, 2401, 4459, 8281, 15379, 16807, 28561, 31213, 57967, 107653, 117649, 199927, 218491, 371293, 405769, 753571, 823543, 1399489, 1529437, 2599051, 2840383, 4826809, 5274997, 5764801, 9796423, 10706059, 18193357, 19882681
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 02 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^7; Flatten[Table[7^i*13^j, {i, 0, Log[7, n]}, {j, 0, Log[13, n/7^i]}]] // Sort (* Amiram Eldar, Sep 23 2020 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=7));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A108056(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,7)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

Sum_{n>=1} 1/a(n) = (7*13)/((7-1)*(13-1)) = 91/72. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(7)*log(13)*n)) / sqrt(91). - Vaclav Kotesovec, Sep 23 2020

Extensions

More terms from Amiram Eldar, Sep 23 2020

A108779 Numbers of the form (10^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 10, 11, 100, 110, 121, 1000, 1100, 1210, 1331, 10000, 11000, 12100, 13310, 14641, 100000, 110000, 121000, 133100, 146410, 161051, 1000000, 1100000, 1210000, 1331000, 1464100, 1610510, 1771561, 10000000, 11000000, 12100000, 13310000
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 26 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108779 n = a108779_list !! (n-1)
    a108779_list = f $ singleton (1,0,0) where
       f s = y : f (insert (10 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^7; Flatten[Table[10^i*11^j, {i, 0, Log10[n]}, {j, 0, Log[11, n/10^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (10*11)/((10-1)*(11-1)) = 11/9. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(10)*log(11)*n)) / sqrt(110). - Vaclav Kotesovec, Sep 25 2020

A045576 Numbers k that divide 3^k + 2^k.

Original entry on oeis.org

1, 5, 25, 55, 125, 275, 605, 625, 1375, 3025, 3125, 6655, 6875, 15125, 15625, 30025, 31375, 33275, 34375, 73205, 75625, 78125, 150125, 156875, 166375, 171875, 330275, 345125, 366025, 378125, 390625, 439835, 750625, 784375, 805255, 831875
Offset: 1

Views

Author

Keywords

Comments

For any j>=0, 5*A003598(j) is a term of the sequence. - Benoit Cloitre, Mar 08 2002
From Robert Israel, Jun 29 2017: (Start)
This is a semigroup: if m and n are in the sequence, then so is m*n.
If n is in the sequence and is divisible by prime p, then so is p*n.
The only prime powers in the sequence are the powers of 5.
Conjecture: Every member of the sequence except 1 is of the form p*m where p is prime and m is in the sequence. (End)
There are infinitely many primes p that divide some term in the sequence. Proof: Define the set A as all primes p such that a k where p divides 2^(5^k) + 3^(5^k) exists is finite. Since 2^(5^(k+1)) + 3^(5^(k+1)) is 2^(5^k) + 3^(5^k) multiplied by some positive integer a. It can be verified that gcd(a, 2^(5^k) + 3^(5^k)) is 5, so 2^(5^(k+1)) + 3^(5^(k+1)) has a larger number of different prime factors than 2^(5^k) + 3^(5^k). Therefore, A is infinite. For each prime q in A, suppose that q divides 2^(5^x) + 3^(5^x) for some x, then 5^x also divides it, so 5^x*q divides it as well, hence 5^x*q is a term of the sequence. The original theorem is proved. - Yifan Xie, Nov 14 2024

Crossrefs

Programs

  • Maple
    select(t -> 3 &^ t + 2 &^ t mod t = 0, [seq(i,i=1..10^6,2)]); # Robert Israel, Jun 29 2017
  • PARI
    isok(n) = ((3^n+2^n) % n) == 0; \\ Michel Marcus, Jun 29 2017
    
  • PARI
    isok(n)=(Mod(2,n)^n+Mod(3,n)^n)==0; \\ significantly more efficient
    for(n=1,10^6,if(isok(n),print1(n,", "))); \\ Joerg Arndt, Aug 13 2017

A056739 Numbers k such that k | 10^k + 9^k + 8^k + 7^k + 6^k + 5^k + 4^k + 3^k + 2^k + 1^k.

Original entry on oeis.org

1, 5, 11, 25, 55, 121, 125, 275, 365, 605, 625, 925, 1331, 1375, 2365, 3025, 3125, 6655, 6875, 14641, 15125, 15625, 22625, 27565, 32125, 33275, 34375, 73205, 75625, 78125, 123365, 161051, 166375, 171875, 366025, 378125, 390625, 541717, 660605
Offset: 1

Views

Author

Robert G. Wilson v, Aug 25 2000

Keywords

Comments

Contains A003598. In general n=p^i * q^j => n | Sum_{k=1..2*p} k^n, where p and q=2*p+1 are prime (see Meyer ref).
All terms == 1 or 5 (mod 6). The only prime terms are 5 and 11. - Robert Israel, Jun 25 2025

Crossrefs

Programs

  • Maple
    filter:= n ->   10 &^n + 9 &^ n + 8 &^ n + 7 &^ n + 6&^ n + 5&^n + 4&^n + 3&^n + 2&^n + 1 mod n = 0:
    select(filter, [seq(seq(6*i + j, j=[1,5]),i=0..10^6)]); # Robert Israel, Jun 25 2025
  • Mathematica
    Do[ If[ Mod[ PowerMod[ 10, n, n ] + PowerMod[ 9, n, n ] + PowerMod[ 8, n, n ] + PowerMod[ 7, n, n ] + PowerMod[ 6, n, n ] + PowerMod[ 5, n, n ] + PowerMod[ 4, n, n ] + PowerMod[ 3, n, n ] + PowerMod[ 2, n, n ] + 1, n ] == 0, Print[ n ] ], {n, 1, 10^6} ]
    Select[Range[700000],Divisible[Total[Range[10]^#],#]&] (* Harvey P. Dale, Nov 24 2014 *)
    Select[Range[700000],Mod[Total[PowerMod[Range[10],#,#]],#]==0&] (* Harvey P. Dale, Feb 23 2023 *)

A108201 Numbers of the form (5^i)*(12^j), with i, j >= 0.

Original entry on oeis.org

1, 5, 12, 25, 60, 125, 144, 300, 625, 720, 1500, 1728, 3125, 3600, 7500, 8640, 15625, 18000, 20736, 37500, 43200, 78125, 90000, 103680, 187500, 216000, 248832, 390625, 450000, 518400, 937500, 1080000, 1244160, 1953125, 2250000, 2592000
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 15 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Take[Union[5^First[#] 12^Last[#]&/@Tuples[Range[0,20],2]],50] (* Harvey P. Dale, Mar 23 2012 *)

Formula

Sum_{n>=1} 1/a(n) = 15/11. - Amiram Eldar, Mar 29 2025

A036305 Composite numbers whose prime factors contain no digits other than 1 and 5.

Original entry on oeis.org

25, 55, 121, 125, 275, 605, 625, 755, 1331, 1375, 1661, 3025, 3125, 3775, 5755, 6655, 6875, 7555, 8305, 12661, 14641, 15125, 15625, 16621, 18271, 18875, 22801, 28775, 33275, 34375, 37775, 41525, 57755, 63305, 73205, 75625, 77555, 77755, 78125
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020453. - David A. Corneth, Oct 09 2020

Crossrefs

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020453} (p/(p - 1)) - Sum_{p in A020453} 1/p - 1 = 0.0873463128... . - Amiram Eldar, May 18 2022
Previous Showing 11-20 of 21 results. Next