cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A377179 Primes p such that -9/2 is a primitive root modulo p.

Original entry on oeis.org

5, 13, 23, 29, 31, 47, 53, 61, 71, 79, 101, 109, 149, 151, 157, 167, 173, 191, 197, 199, 223, 229, 239, 263, 269, 277, 293, 311, 317, 359, 367, 373, 383, 389, 461, 463, 479, 487, 503, 509, 557, 599, 613, 647, 653, 661, 677, 701, 709, 719, 733, 743, 757, 773, 797, 821, 823, 829, 839, 853, 863, 887, 911, 967, 983, 991
Offset: 1

Views

Author

Jianing Song, Oct 18 2024

Keywords

Comments

If p is a term in this sequence, then -9/2 is not a square modulo p (i.e., p is in A003628).
Conjecture: this sequence has relative density equal to Artin's constant (A005596) with respect to the set of primes.

Crossrefs

Primes p such that +a/2 is a primitive root modulo p: A320384 (a=3), A377174 (a=5), A377176 (a=7), A377178 (a=9).
Primes p such that -a/2 is a primitive root modulo p: A377172 (a=3), A377175 (a=5), A377177 (a=7), this sequence (a=9).

Programs

  • PARI
    forprime(p=5, 10^3, if(znorder(Mod(-9/2, p))==p-1, print1(p, ", ")));

A124923 a(n) = n^(n-1) + 1.

Original entry on oeis.org

2, 3, 10, 65, 626, 7777, 117650, 2097153, 43046722, 1000000001, 25937424602, 743008370689, 23298085122482, 793714773254145, 29192926025390626, 1152921504606846977, 48661191875666868482, 2185911559738696531969
Offset: 1

Views

Author

Alexander Adamchuk, Nov 12 2006

Keywords

Comments

Prime p divides a(p-1). n divides a(n-1) for all prime n and all odd composite n.
p divides a((p+1)/2) for prime p = {3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, ...} = A003629 (Primes congruent to {3,5} mod 8).
p divides a((p+3)/4) for prime p = {13, 73, 97, 109, 181, 229, 241, 277, 337, 409, 421, 457, 541, 709, 733, 757, 829, ...} = A107141 (Primes of the form 4x^2+9y^2).
p divides a((p+5)/6) for prime p = {43, 61, 79, 109, 151, 163, 181, 193, 313, 337, 433, 523, 577, 631, 643, 673, 787, 829, 907, 991, ...}.
p divides a((p+7)/8) for prime p = {113, 137, 569, 641, 673, 1129, 1289, 1297, 1481, 1801, ...}.
p divides a((3p-1)/2) for prime p = {5, 7, 13, 23, 29, 31, 37, 47, 53, 61, 71, 79, 101, 103, 109, 127, 149, 151, 157, 167, 173, 181, 191, 197, 199, ...} = A003628 (Primes congruent to {5, 7} mod 8).
p^2 divides a((3p-1)/2) for prime p = {5, 13, 173, 5501, ...} = A124924.

Crossrefs

Programs

  • GAP
    List([1..20], n-> n^(n-1) + 1); # G. C. Greubel, Nov 19 2019
  • Magma
    [n^(n-1) + 1: n in [1..20]]; // Vincenzo Librandi, Aug 14 2012
    
  • Maple
    seq(n^(n-1) + 1, n=1..20); # G. C. Greubel, Nov 19 2019
  • Mathematica
    Table[n^(n-1)+1, {n,20}]
  • PARI
    vector(20, n, n^(n-1) + 1) \\ G. C. Greubel, Nov 19 2019
    
  • Sage
    [n^(n-1) + 1 for n in (1..20)] # G. C. Greubel, Nov 19 2019
    

Formula

a(n) = n^(n-1) + 1.
a(n) = A000169(n) + 1.
E.g.f.: -1 + exp(x) - W(-x), where W(x) is the Lambert w-function. - G. C. Greubel, Nov 19 2019

A124924 Primes p such that p^2 divides A124923((3p-1)/2) = ((3p-1)/2)^(3(p-1)/2) + 1.

Original entry on oeis.org

5, 13, 173, 5501
Offset: 1

Views

Author

Alexander Adamchuk, Nov 12 2006

Keywords

Comments

p divides A124923((3p-1)/2) for primes p in A003628. Hence this sequence is a subsequence of A003628.
Also, primes p such that (-2)^((p-1)/2) == -1-3p/2 (mod p^2).
No other terms below 10^11.

Examples

			5 is in this sequence because A124923((3*5-1)/2) = A124923(7) = 7^8 + 1 = 117650 is divisible by 5^2 = 25.
		

Crossrefs

Programs

  • Mathematica
    Do[ p = Prime[n]; m = (3p-1)/2; f = PowerMod[ m, m-1, p^2 ] + 1; If[ IntegerQ[ f/p^2 ], Print[p] ], {n,2,10000} ]

Extensions

Edited by Max Alekseyev, Jan 28 2012

A165815 Prime congruent numbers (A003273).

Original entry on oeis.org

5, 7, 13, 23, 29, 31, 37, 41, 47, 53, 61, 71, 79, 101, 103, 109, 127, 137, 149, 151, 157, 167, 173, 181, 191, 197, 199, 223, 229, 239, 257, 263, 269, 271, 277, 293, 311, 313, 317, 349, 353, 359, 367, 373, 383, 389, 397, 421, 431, 439, 457, 461, 463, 479, 487
Offset: 1

Views

Author

T. D. Noe, Sep 28 2009

Keywords

Comments

Heegner proved that every prime p with p = 5 or 7 (mod 8) is a congruent number. See A003628 for those primes.

References

  • Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Zeitschrift 56 (1952), 227-253.

Crossrefs

A263458 Deal a pack of n cards into two piles and gather them up, n/2 times. All n such that this reverses the order of the deck.

Original entry on oeis.org

4, 6, 12, 22, 28, 30, 36, 46, 52, 60, 70, 78, 100, 102, 108, 126, 148, 150, 156, 166, 172, 180, 190, 196, 198, 222, 228, 238, 262, 268, 270, 276, 292, 310, 316, 348, 358, 366, 372, 382, 388, 396, 420, 430, 438, 460, 462, 478, 486, 502, 508, 540, 556, 598
Offset: 1

Views

Author

Christian Perfect, Oct 19 2015

Keywords

Comments

This seems to be A003628(n)-1; that is, each element of this sequence is one less than a prime congruent to 5 or 7 modulo 8.

Examples

			Take a deck of 52 playing cards. Deal it into two piles, then pick up the first pile and put it on top of the other. Do this 26 times. The order of the deck is reversed, so 52 belongs to this sequence.
6 is in the sequence because the 3 shuffles are [1, 2, 3, 4, 5, 6] -> [5, 3, 1, 6, 4, 2] -> [4, 1, 5, 2, 6, 3] -> [6, 5, 4, 3, 2, 1], original reversed. 8 is not in the sequence because the 4 shuffles are [1, 2, 3, 4, 5, 6, 7, 8] -> [7, 5, 3, 1, 8, 6, 4, 2] -> [4, 8, 3, 7, 2, 6, 1, 5] -> [1, 2, 3, 4, 5, 6, 7, 8] -> [7, 5, 3, 1, 8, 6, 4, 2], not the original reversed. - _R. J. Mathar_, Aug 02 2024
		

Crossrefs

Programs

  • Maple
    isA263458 := proc(n)
        local L,itr ;
        L := [seq(i,i=1..n)] ;
        for itr from 1 to n/2 do
            L := pileShuf(L) ; # function code in A323712
        end do:
        for i from 1 to nops(L) do
            if op(-i,L) <> i then
                return false ;
            end if;
        end do:
        true ;
    end proc:
    n := 1;
    for k from 2 do
        if isA263458(k) then
            printf("%d %d\n",n,k) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Aug 02 2024
  • Sage
    from itertools import cycle
    def into_piles(r,deck):
        packs = [[] for i in range(r)]
        for card, pack in zip(range(1,deck+1),cycle(range(r))):
            packs[pack].insert(0,card)
        out = sum(packs,[])
        return Permutation(out)
    def has_reversing_property(deck):
        p = power(into_piles(2,deck), deck/2)
        return p==into_piles(1,deck)
    [i for i in range(2,400,2) if has_reversing_property(i)]

A165816 Prime congruent numbers (A165815) that are not equal to 5 or 7 (mod 8).

Original entry on oeis.org

41, 137, 257, 313, 353, 457, 761, 1201, 1217, 1249, 1321, 2113, 2273, 2777, 2833, 2953, 3001, 3433, 3593, 3761, 3881, 4441, 4481, 4649, 4793, 4889, 5273, 5449, 5569, 5657, 5849, 6073, 6529, 7001, 7321, 7417, 7561, 7793, 8521, 8609, 9049, 9257, 9281
Offset: 1

Views

Author

T. D. Noe, Sep 28 2009

Keywords

Comments

Heegner proved that every prime p with p = 5 or 7 (mod 8) is a congruent number. See A003628 for those primes. All primes in this sequence equal 1 (mod 8).
Monsky proved that no prime of the form 8k+3 is a congruent number. - Jonathan Sondow, Nov 15 2017

Crossrefs

Cf. A003273 (congruent numbers), A165815 (prime congruent numbers).

A369863 Inert rational primes in the field Q(sqrt(-21)).

Original entry on oeis.org

13, 29, 43, 47, 53, 59, 61, 67, 73, 79, 83, 97, 113, 127, 131, 137, 149, 151, 157, 163, 167, 181, 197, 211, 227, 229, 233, 241, 251, 281, 311, 313, 317, 331, 349, 379, 383, 389, 397, 401, 409, 419, 433, 449, 463, 467, 479, 487, 499, 503, 547, 557, 563, 569, 571, 577, 587
Offset: 1

Views

Author

Dimitris Cardaris, Feb 03 2024

Keywords

Comments

Primes p such that Legendre(-21,p) = -1.

Crossrefs

Cf. inert rational primes in the imaginary quadratic field Q(sqrt(-d)) for the first squarefree positive integers d: A002145 (1), A003628 (2), A003627 (3), A003626 (5), A191059 (6), A003625 (7), A296925 (10), A191060 (11), A105885 (13), A191061 (14), A191062 (15), A296930 (17), A191063 (19), this sequence (21), A191064 (22), A191065 (23).

Programs

  • Mathematica
    Select[Range[3,600], PrimeQ[#] && JacobiSymbol[-21,#]==-1 &] (* Stefano Spezia, Feb 04 2024 *)
  • SageMath
    [p for p in prime_range(3, 600) if legendre_symbol(-21, p) == -1]
Previous Showing 11-17 of 17 results.