A377179
Primes p such that -9/2 is a primitive root modulo p.
Original entry on oeis.org
5, 13, 23, 29, 31, 47, 53, 61, 71, 79, 101, 109, 149, 151, 157, 167, 173, 191, 197, 199, 223, 229, 239, 263, 269, 277, 293, 311, 317, 359, 367, 373, 383, 389, 461, 463, 479, 487, 503, 509, 557, 599, 613, 647, 653, 661, 677, 701, 709, 719, 733, 743, 757, 773, 797, 821, 823, 829, 839, 853, 863, 887, 911, 967, 983, 991
Offset: 1
Primes p such that -a/2 is a primitive root modulo p:
A377172 (a=3),
A377175 (a=5),
A377177 (a=7), this sequence (a=9).
-
forprime(p=5, 10^3, if(znorder(Mod(-9/2, p))==p-1, print1(p, ", ")));
A124923
a(n) = n^(n-1) + 1.
Original entry on oeis.org
2, 3, 10, 65, 626, 7777, 117650, 2097153, 43046722, 1000000001, 25937424602, 743008370689, 23298085122482, 793714773254145, 29192926025390626, 1152921504606846977, 48661191875666868482, 2185911559738696531969
Offset: 1
-
List([1..20], n-> n^(n-1) + 1); # G. C. Greubel, Nov 19 2019
-
[n^(n-1) + 1: n in [1..20]]; // Vincenzo Librandi, Aug 14 2012
-
seq(n^(n-1) + 1, n=1..20); # G. C. Greubel, Nov 19 2019
-
Table[n^(n-1)+1, {n,20}]
-
vector(20, n, n^(n-1) + 1) \\ G. C. Greubel, Nov 19 2019
-
[n^(n-1) + 1 for n in (1..20)] # G. C. Greubel, Nov 19 2019
A124924
Primes p such that p^2 divides A124923((3p-1)/2) = ((3p-1)/2)^(3(p-1)/2) + 1.
Original entry on oeis.org
5, 13, 173, 5501
Offset: 1
5 is in this sequence because A124923((3*5-1)/2) = A124923(7) = 7^8 + 1 = 117650 is divisible by 5^2 = 25.
-
Do[ p = Prime[n]; m = (3p-1)/2; f = PowerMod[ m, m-1, p^2 ] + 1; If[ IntegerQ[ f/p^2 ], Print[p] ], {n,2,10000} ]
Original entry on oeis.org
5, 7, 13, 23, 29, 31, 37, 41, 47, 53, 61, 71, 79, 101, 103, 109, 127, 137, 149, 151, 157, 167, 173, 181, 191, 197, 199, 223, 229, 239, 257, 263, 269, 271, 277, 293, 311, 313, 317, 349, 353, 359, 367, 373, 383, 389, 397, 421, 431, 439, 457, 461, 463, 479, 487
Offset: 1
- Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Zeitschrift 56 (1952), 227-253.
A263458
Deal a pack of n cards into two piles and gather them up, n/2 times. All n such that this reverses the order of the deck.
Original entry on oeis.org
4, 6, 12, 22, 28, 30, 36, 46, 52, 60, 70, 78, 100, 102, 108, 126, 148, 150, 156, 166, 172, 180, 190, 196, 198, 222, 228, 238, 262, 268, 270, 276, 292, 310, 316, 348, 358, 366, 372, 382, 388, 396, 420, 430, 438, 460, 462, 478, 486, 502, 508, 540, 556, 598
Offset: 1
Take a deck of 52 playing cards. Deal it into two piles, then pick up the first pile and put it on top of the other. Do this 26 times. The order of the deck is reversed, so 52 belongs to this sequence.
6 is in the sequence because the 3 shuffles are [1, 2, 3, 4, 5, 6] -> [5, 3, 1, 6, 4, 2] -> [4, 1, 5, 2, 6, 3] -> [6, 5, 4, 3, 2, 1], original reversed. 8 is not in the sequence because the 4 shuffles are [1, 2, 3, 4, 5, 6, 7, 8] -> [7, 5, 3, 1, 8, 6, 4, 2] -> [4, 8, 3, 7, 2, 6, 1, 5] -> [1, 2, 3, 4, 5, 6, 7, 8] -> [7, 5, 3, 1, 8, 6, 4, 2], not the original reversed. - _R. J. Mathar_, Aug 02 2024
-
isA263458 := proc(n)
local L,itr ;
L := [seq(i,i=1..n)] ;
for itr from 1 to n/2 do
L := pileShuf(L) ; # function code in A323712
end do:
for i from 1 to nops(L) do
if op(-i,L) <> i then
return false ;
end if;
end do:
true ;
end proc:
n := 1;
for k from 2 do
if isA263458(k) then
printf("%d %d\n",n,k) ;
n := n+1 ;
end if;
end do: # R. J. Mathar, Aug 02 2024
-
from itertools import cycle
def into_piles(r,deck):
packs = [[] for i in range(r)]
for card, pack in zip(range(1,deck+1),cycle(range(r))):
packs[pack].insert(0,card)
out = sum(packs,[])
return Permutation(out)
def has_reversing_property(deck):
p = power(into_piles(2,deck), deck/2)
return p==into_piles(1,deck)
[i for i in range(2,400,2) if has_reversing_property(i)]
A165816
Prime congruent numbers (A165815) that are not equal to 5 or 7 (mod 8).
Original entry on oeis.org
41, 137, 257, 313, 353, 457, 761, 1201, 1217, 1249, 1321, 2113, 2273, 2777, 2833, 2953, 3001, 3433, 3593, 3761, 3881, 4441, 4481, 4649, 4793, 4889, 5273, 5449, 5569, 5657, 5849, 6073, 6529, 7001, 7321, 7417, 7561, 7793, 8521, 8609, 9049, 9257, 9281
Offset: 1
A369863
Inert rational primes in the field Q(sqrt(-21)).
Original entry on oeis.org
13, 29, 43, 47, 53, 59, 61, 67, 73, 79, 83, 97, 113, 127, 131, 137, 149, 151, 157, 163, 167, 181, 197, 211, 227, 229, 233, 241, 251, 281, 311, 313, 317, 331, 349, 379, 383, 389, 397, 401, 409, 419, 433, 449, 463, 467, 479, 487, 499, 503, 547, 557, 563, 569, 571, 577, 587
Offset: 1
Cf. inert rational primes in the imaginary quadratic field Q(sqrt(-d)) for the first squarefree positive integers d:
A002145 (1),
A003628 (2),
A003627 (3),
A003626 (5),
A191059 (6),
A003625 (7),
A296925 (10),
A191060 (11),
A105885 (13),
A191061 (14),
A191062 (15),
A296930 (17),
A191063 (19), this sequence (21),
A191064 (22),
A191065 (23).
-
Select[Range[3,600], PrimeQ[#] && JacobiSymbol[-21,#]==-1 &] (* Stefano Spezia, Feb 04 2024 *)
-
[p for p in prime_range(3, 600) if legendre_symbol(-21, p) == -1]
Comments