cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A014675 The infinite Fibonacci word (start with 1, apply 1->2, 2->21, take limit).

Original entry on oeis.org

2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2
Offset: 0

Views

Author

Keywords

Comments

The limiting mean and variance of the first n terms are both equal to the golden ratio (A001622). - Clark Kimberling, Mar 12 2014
Let F = A000045 (Fibonacci numbers). For n >= 3, the first F(n)-2 terms of A014675 form a palindrome; see A001911. If k is not one of the numbers F(n)-2, then the first k terms of A014675 do not form a palindrome. - Clark Kimberling, Jul 14 2014
First differences of A000201. - Tom Edgar, Apr 23 2015 [Editor's note: except for the offset: as for A022342, below. - M. F. Hasler, Oct 13 2017]
Also first differences of A022342 (which starts at offset 1): a(n)=A022342(n+2)-A022342(n+1), n >= 0. Equal to A001468 without its first term: a(n) = A001468(n+1), n >= 0. - M. F. Hasler, Oct 13 2017
The word is a concatenation of three runs: 1, 2, and 22. The limiting proportions of these are respectively 1/2, 1 - phi/2, and (phi - 1)/2, where phi = golden ratio. The mean runlength is (phi + 1)/2. - Clark Kimberling, Dec 26 2010

References

  • D. Gault and M. Clint, "Curiouser and curiouser" said Alice. Further reflections on an interesting recursive function, Internat. J. Computer Math., 26 (1988), 35-43. See Table 2.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7, p. 36.
  • G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.

Crossrefs

This is the {2,1} version. The standard form is A003849 (alphabet {0,1}). See also A005614 (alphabet {1,0}), A003842 (alphabet {1,2} instead of {2,1}).
Equals A001468 except for initial term.
Differs from A025143 in many entries starting at entry 8.
First differences of A000201 and of A022342.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Maple
    Digits := 50: t := evalf( (1+sqrt(5))/2); A014675 := n->floor((n+2)*t)-floor((n+1)*t);
  • Mathematica
    Nest[ Flatten[ # /. {1 -> 2, 2 -> {2, 1}}] &, {1}, 11] (* Robert G. Wilson v *)
    SubstitutionSystem[{1->{2},2->{2,1}},{1},{11}][[1]] (* Harvey P. Dale, Jan 01 2023 *)
  • PARI
    first(n)=my(v=[1],u); while(#vCharles R Greathouse IV, Jun 21 2017
    
  • PARI
    apply( {A014675(n,r=quadgen(5)-1)=(n+2)\r-(n+1)\r}, [0..99]) \\ M. F. Hasler, Apr 07 2021, improved on suggestion from Kevin Ryde, Apr 23 2021
    
  • Python
    from math import isqrt
    def A014675(n): return (n+2+isqrt(m:=5*(n+2)**2)>>1)-(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 10 2022

Formula

Define strings S(0)=1, S(1)=2, S(n)=S(n-1).S(n-2) for n>=2. Sequence is S(infinity).
a(n) = floor((n+2)*phi) - floor((n+1)*phi) = A000201(n+2) - A000201(n+1), phi = (1 + sqrt(5))/2.

Extensions

Corrected by N. J. A. Sloane, Nov 07 2001

A096270 Fixed point of the morphism 0->01, 1->011.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2004

Keywords

Comments

This is another version of the Fibonacci word A005614.
(With offset 1) for k>0, a(ceiling(k*phi^2))=0 and a(floor(k*phi^2))=1 where phi=(1+sqrt(5))/2 is the Golden ratio. - Benoit Cloitre, Apr 01 2006
(With offset 1) for n>1 a(A000045(n)) = (1-(-1)^n)/2.
Equals the Fibonacci word A005614 with an initial zero.
Also the Sturmian word of slope phi (cf. A144595). - N. J. A. Sloane, Jan 13 2009
More precisely: (a(n)) is the inhomogeneous Sturmian word of slope phi-1 and intercept 0: a(n) = floor((n+1)*(phi-1)) - floor(n*(phi-1)), n >= 0. - Michel Dekking, May 21 2018
The ratio of number of 1's to number of 0's tends to the golden ratio (1+sqrt(5))/2 = 1.618... - Zak Seidov, Feb 15 2012

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.

Crossrefs

Cf. A003849, A096268, A001519. See A005614, A114986 for other versions.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [-1+Floor(n*(1+Sqrt(5))/2)-Floor((n-1)*(1+Sqrt(5))/2): n in [1..100]]; // Wesley Ivan Hurt, Aug 29 2022
  • Mathematica
    Nest[ Function[l, {Flatten[(l /. {0 -> {0, 1}, 1 -> {0, 1, 1}})]}], {0}, 6] (* Robert G. Wilson v, Feb 04 2005 *)
  • PARI
    a(n)=-1+floor(n*(1+sqrt(5))/2)-floor((n-1)*(1+sqrt(5))/2) \\ Benoit Cloitre, Apr 01 2006
    
  • Python
    from math import isqrt
    def A096270(n): return (n+1+isqrt(5*(n+1)**2)>>1)-(n+isqrt(5*n**2)>>1)>>1 # Chai Wah Wu, Aug 29 2022
    

Formula

Conjecture: a(n) is given recursively by a(1)=0 and, for n>1, by a(n)=1 if n=F(2k+1) and a(n)=a(n-F(2k+1)) otherwise, where F(2k+1) is the largest odd-indexed Fibonacci number smaller than or equal to n. (This has been confirmed for more than nine million terms.) The odd-indexed bisection of the Fibonacci numbers (A001519) is {1, 2, 5, 13, 34, 89, ...}. So by the conjecture, we would expect that a(30) = a(30-13) = a(17) = a(17-13) = a(4) = a(4-2) = a(2) = 1, which is in fact correct. - John W. Layman, Jun 29 2004
From Michel Dekking, Apr 13 2016: (Start)
Proof of the above conjecture:
Let g be the morphism above: g(0)=01, g(1)=011. Then g^n(0) has length F(2n+1), and (a(n)) starts with g^n(0) for all n>0. Obviously g^n(0) ends in 1 for all n, proving the first part of the conjecture.
We extend the semigroup of words with letters 0 and 1 to the free group, adding the inverses 0*:=0^{-1} and 1*:=1^{-1}. Easy observation: for any word w one has g(w1)= g(w0)1. We claim that for all n>1 one has g^n(0)=u(n)v(n)v(n)0*1, where u(n)=g(u(n-1))0 and v(n)=0*g(v(n-1))0. The recursion starts with u(2)=0, v(2)=10. Indeed: g^2(0)=01011=u(2)v(2)v(2)0*1. Induction step:
g^{n+1}(0)=g(g^n(0))= g(u(n)v(n)v(n)0*1)= g(u(n)v(n)v(n))1= g(u(n))00*g(v(n))00*g(v(n))00*1=u(n+1)v(n+1)v(n+1)0*1.
Since v(n) has length F(2n-1), which is the largest odd-indexed Fibonacci number smaller than or equal to m for all m between F(2n-1) and F(2n+1), the claim proves the second part of the conjecture. (End)
(With offset 1) a(n) = -1 + floor(n*phi) - floor((n-1)*phi) where phi=(1+sqrt(5))/2 so a(n) = -1 + A082389(n). - Benoit Cloitre, Apr 01 2006

Extensions

More terms from John W. Layman, Jun 29 2004

A001468 There are a(n) 2's between successive 1's.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The Fibonacci word on the alphabet {2,1}, with an extra 1 in front. - Michel Dekking, Nov 26 2018
Start with 1, apply 1->12, 2->122, take limit. - Philippe Deléham, Sep 23 2005
Also number of occurrences of n in Hofstadter G-sequence (A005206) and in A019446. - Reinhard Zumkeller, Feb 02 2012, Aug 07 2011
A block-fractal sequence: every block occurs infinitely many times. Also a reverse block-fractal sequence. See A280511. - Clark Kimberling, Jan 06 2017

References

  • D. Gault and M. Clint, "Curiouser and curiouser" said Alice. Further reflections on an interesting recursive function, Internat. J. Computer Math., 26 (1988), 35-43. See Table 2.
  • D. R. Hofstadter, personal communication, Jul 15 1977.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as A014675 if initial 1 is deleted. Cf. A003849, A000201, A280511.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    import Data.List (group)
    a001468 n = a001468_list !! n
    a001468_list = map length $ group a005206_list
    -- Reinhard Zumkeller, Aug 07 2011
    
  • Maple
    Digits := 100: t := evalf( (1+sqrt(5))/2); A001468 := n-> floor((n+1)*t)-floor(n*t);
  • Mathematica
    Table[Floor[GoldenRatio*(n + 1)] - Floor[GoldenRatio*n], {n, 0, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
    Nest[ Flatten[# /. {1 -> {1, 2}, 2 -> {1, 2, 2}}] &, {1}, 6] (* Robert G. Wilson v, May 20 2014 and corrected Apr 24 2017 following Clark Kimberling's email of Mar 22 2017 *)
    SubstitutionSystem[{1->{1,2},2->{1,2,2}},{1},{6}][[1]] (* Harvey P. Dale, Jan 31 2022 *)
  • PARI
    a=[1];for(i=1,30,a=concat([a,vector(a[i],j,2),1]));a \\ Or compute as A001468(n)=A201(n+1)-A201(n) with A201(n)=(n+sqrtint(5*n^2))\2, working for n>=0 although A000201 is defined for n>=1. - M. F. Hasler, Oct 13 2017
    
  • Python
    def A001468(length):
        a = [1]
        for i in range(length):
            for _ in range(a[i]):
                a.append(2)
            a.append(1)
            if len(a)>=length:
                break
        return a[:length] # Nicholas Stefan Georgescu, Jun 02 2022
    
  • Python
    from math import isqrt
    def A001468(n): return (n+1+isqrt(m:=5*(n+1)**2)>>1)-(n+isqrt(m-10*n-5)>>1) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = [(n+1) tau] - [n tau], tau = (1 + sqrt 5)/2 = A001622, [] = floor function.
a(n) = A000201(n+1) - A000201(n) = A022342(n+1) - A022342(n), n >= 1; i.e., the first term discarded, this yields the first differences of A000201 and A022342. - M. F. Hasler, Oct 13 2017

Extensions

Rechecked by N. J. A. Sloane, Nov 07 2001

A001030 Fixed under 1 -> 21, 2 -> 211.

Original entry on oeis.org

2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Keywords

Comments

If treated as the terms of a continued fraction, it converges to approximately
2.57737020881617828717350576260723346479894963737498275232531856357441\
7024804797827856956758619431996. - Peter Bertok (peter(AT)bertok.com), Nov 27 2001
There are a(n) 1's between successive 2's. - Eric Angelini, Aug 19 2008
Same sequence where 1's and 2's are exchanged: A001468. - Eric Angelini, Aug 19 2008

References

  • Midhat J. Gazale, Number: From Ahmes to Cantor, Section on 'Cleavages' in Chapter 6, Princeton University Press, Princeton, NJ 2000, pp. 203-211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Length of the sequence after 'n' substitution steps is given by the terms of A000129.
Equals A004641(n) + 1.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    Following Spage's PARI program.
    a001030 n = a001030_list !! (n-1)
    a001030_list = [2, 1, 1, 2] ++ f [2] [2, 1, 1, 2] where
       f us vs = ws ++ f vs (vs ++ ws) where
                 ws = 1 : us ++ 1 : vs
    -- Reinhard Zumkeller, Aug 04 2014
    
  • Mathematica
    ('n' is the number of substitution steps to perform.) Nest[Flatten[ # /. {1 -> {2, 1}, 2 -> {2, 1, 1}}] &, {1}, n]
    SubstitutionSystem[{1->{2,1},2->{2,1,1}},{2},{6}][[1]] (* Harvey P. Dale, Feb 15 2022 *)
  • PARI
    /* Fast string concatenation method giving e.g. 5740 terms in 8 iterations */
    a="2";b="2,1,1,2";print1(b);for(x=1,8,c=concat([",1,",a,",1,",b]);print1(c);a=b;b=concat(b,c)) \\ K. Spage, Oct 08 2009
    
  • Python
    from math import isqrt
    def A001030(n): return [2, 1, 1, 2, 1, 2, 1, 2][n-1] if n < 9 else -isqrt(m:=(n-9)*(n-9)<<1)+isqrt(m+(n-9<<2)+2) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = -1 + floor(n*(1+sqrt(2))+1/sqrt(2))-floor((n-1)*(1+sqrt(2))+1/sqrt(2)). - Benoit Cloitre, Jun 26 2004. [I don't know if this is a theorem or a conjecture. - N. J. A. Sloane, May 14 2008]
This is a theorem, following from Hofstadter's Generalized Fundamental Theorem of eta-sequences on page 10 of Eta-Lore. See also de Bruijn's paper from 1981 (hint from Benoit Cloitre). - Michel Dekking, Jan 22 2017

Extensions

More terms from Peter Bertok (peter(AT)bertok.com), Nov 27 2001

A004641 Fixed under 0 -> 10, 1 -> 100.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Partial sums: A088462. - Reinhard Zumkeller, Dec 05 2009
Write w(n) = a(n) for n >= 1. Each w(n) is generated by w(i) for exactly one i <= n; let g(n) = i. Each w(i) generates a single 1, in a word (10 or 100) that starts with 1. Therefore, g(n) is the number of 1s among w(1), ..., w(n), so that g = A088462. That is, this sequence is generated by its partial sums. - Clark Kimberling, May 25 2011

Crossrefs

Equals A001030 - 1. Essentially the same as A006337 - 1 and A159684.
Characteristic function of A086377.
Cf. A081477.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [Floor(n*(Sqrt(2) - 1) + Sqrt(1/2)) - Floor((n - 1)*(Sqrt(2) - 1) + Sqrt(1/2)): n in [0..100]]; // Vincenzo Librandi, Mar 27 2015
    
  • Maple
    P(0):= (1,0): P(1):= (1,0,0):
    ((P~)@@6)([1]);
    # in Maple 12 or earlier, comment the above line and uncomment the following:
    # (curry(map,P)@@6)([1]); # Robert Israel, Mar 26 2015
  • Mathematica
    Nest[ Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 0}}] &, {1}, 5] (* Robert G. Wilson v, May 25 2011 *)
    SubstitutionSystem[{0->{1,0},1->{1,0,0}},{1},5]//Flatten (* Harvey P. Dale, Nov 20 2021 *)
  • Python
    from math import isqrt
    def A004641(n): return [1, 0, 0, 1, 0, 1, 0, 1][n-1] if n < 9 else -1-isqrt(m:=(n-9)*(n-9)<<1)+isqrt(m+(n-9<<2)+2) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = floor(n*(sqrt(2) - 1) + sqrt(1/2)) - floor((n - 1)*(sqrt(2) - 1) + sqrt(1/2)) (from the de Bruijn reference). - Peter J. Taylor, Mar 26 2015
From Jianing Song, Jan 02 2019: (Start)
a(n) = A001030(n) - 1.
a(n) = A006337(n-9) - 1 = A159684(n-10) for n >= 10. (End)

A088462 a(1)=1, a(n) = ceiling((n - a(a(n-1)))/2).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 32
Offset: 1

Views

Author

Benoit Cloitre, Nov 12 2003

Keywords

Comments

Partial sums of A004641. - Reinhard Zumkeller, Dec 05 2009
This sequence generates A004641; see comment at A004641. - Clark Kimberling, May 25 2011

Crossrefs

Cf. A005206.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [Floor((Sqrt(2)-1)*n+1/Sqrt(2)): n in [1..100]]; // Vincenzo Librandi, Jun 26 2017
  • Mathematica
    Table[Floor[(Sqrt[2] - 1) n + 1 / Sqrt[2]], {n, 100}] (* Vincenzo Librandi, Jun 26 2017 *)
  • Python
    l=[0, 1, 1]
    for n in range(3, 101): l.append(n - l[n - 1] - l[l[n - 2]])
    print(l[1:]) # Indranil Ghosh, Jun 24 2017, after Altug Alkan
    

Formula

a(n) = floor((sqrt(2)-1)*n + 1/sqrt(2)).
a(1) = a(2) = 1; a(n) = n - a(n-1) - a(a(n-2)) for n > 2. - Altug Alkan, Jun 24 2017

A114986 Characteristic function of (A000201 prefixed with 0).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2006

Keywords

Crossrefs

Essentially the same as A005614. Cf. A096270, A189479.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

A124841 Inverse binomial transform of A005614, the rabbit sequence: (1, 0, 1, 1, 0, ...).

Original entry on oeis.org

1, -1, 2, -3, 3, 0, -10, 35, -90, 200, -400, 726, -1188, 1716, -2080, 1820, -312, -2704, 5408, 455, -39195, 170313, -523029, 1352078, -3114774, 6548074, -12668578, 22492886, -36020998, 49549110, -49549110, 0, 182029056, -670853984, 1809734560, -4242470755
Offset: 0

Views

Author

Gary W. Adamson, Nov 10 2006

Keywords

Comments

As with every inverse binomial transform, the numbers are given by starting from the sequence (A005614) and reading the leftmost values of the array of repeated differences.

Examples

			Given 1, 0, 1, 1, 0, ..., take finite difference rows:
1, 0, 1, 1, 0, ...
_-1, 1, 0, -1, ...
___ 2, -1, -1, ...
_____ -3, 0, ...
________ 3, ...
Left border becomes the sequence.
		

Crossrefs

Cf. A124842.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Mathematica
    A005614 = SubstitutionSystem[{0 -> {1}, 1 -> {1, 0}}, {1, 0}, 7] // Last;
    Table[Differences[A005614, n], {n, 0, 35}][[All, 1]] (* Jean-François Alcover, Feb 06 2020 *)

Extensions

Corrected and extended by R. J. Mathar, Nov 28 2011

A342759 Fold a square sheet of paper alternately vertically to the left and horizontally downwards; after each fold, draw a line along each inward crease; after n folds, the resulting graph has a(n) regions.

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 16, 25, 43, 73, 133, 241, 457, 865, 1681, 3265, 6433, 12673, 25153, 49921, 99457, 198145, 395521, 789505, 1577473, 3151873, 6300673, 12595201, 25184257, 50356225, 100700161
Offset: 0

Views

Author

Rémy Sigrist and N. J. A. Sloane, Mar 21 2021

Keywords

Comments

Take a square sheet of paper and fold it first vertically and then horizontally so that the bottom right corner stays in place. After each fold, unfold the paper and draw a line along each crease that is indented inwards (along which water would flow); upward creases (ridges) are not marked.
After two folds, we again have a (smaller and thicker) square, and we repeat the process.
After n individual folds, when the paper is unfolded the lines form a planar graph G(n). The numbers of regions, vertices, edges, and connected components in G(n) are given in the present sequence, A146528 (still to be confirmed), A342761, and A342762.
The number of vertices of degree 1 after n+1 folds appears to be A274230(n).
We ignore the folk theorem that says no sheet of paper can be folded more than seven times.

Examples

			See illustration in Links section.
		

References

  • Rémy Sigrist and N. J. A. Sloane, Notes on Two-Dimensional Paper-Folding, Manuscript in preparation, April 2021.

Crossrefs

A120613 a(n) = floor(phi*floor(n/phi)) where phi=(1+sqrt(5))/2.

Original entry on oeis.org

0, 1, 1, 3, 4, 4, 6, 6, 8, 9, 9, 11, 12, 12, 14, 14, 16, 17, 17, 19, 19, 21, 22, 22, 24, 25, 25, 27, 27, 29, 30, 30, 32, 33, 33, 35, 35, 37, 38, 38, 40, 40, 42, 43, 43, 45, 46, 46, 48, 48, 50, 51, 51, 53, 53, 55, 56, 56, 58, 59, 59, 61, 61, 63, 64, 64, 66, 67, 67, 69, 69, 71, 72
Offset: 1

Views

Author

Benoit Cloitre, Jun 17 2006

Keywords

Crossrefs

Cf. A001622, A120614 (first differences), A120615 (partial sums), A003842.

Programs

  • Magma
    [Floor((1+Sqrt(5))*Floor(2*n/(1+Sqrt(5)))/2): n in [1..100]]; // G. C. Greubel, Oct 23 2018
    
  • Mathematica
    Table[Floor[GoldenRatio*Floor[n/GoldenRatio]], {n,1,100}] (* G. C. Greubel, Oct 23 2018 *)
  • PARI
    f=(1+sqrt(5))/2;a(n)=floor(f*floor(n/f))
    
  • Python
    from math import isqrt
    def A120613(n): return (m:=(n+isqrt(5*n**2)>>1)-n)+isqrt(5*m**2)>>1 # Chai Wah Wu, Aug 26 2022

Formula

a(n) = n - A003842(n-2) for n >= 2. [Corrected by Georg Fischer, Jan 31 2019]
In particular, a(n) = n-1 or a(n) = n-2. - Charles R Greathouse IV, Aug 26 2022

Extensions

Offset changed by Michel Dekking, Oct 23 2018
Previous Showing 21-30 of 53 results. Next