cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 107 results. Next

A052146 a(n) = floor((sqrt(1+8*n)-3)/2).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

N. J. A. Sloane, Jan 23 2000

Keywords

References

  • Richard P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge, 1999; see p. 450, Problem 7.2(d).

Crossrefs

Programs

  • Mathematica
    Floor[(Sqrt[1 + 8 Range[100]] - 3)/2] (* Wesley Ivan Hurt, Oct 02 2021 *)
  • PARI
    a(n) = (sqrtint(1 + 8*n)-3)\2; \\ Amiram Eldar, Jun 27 2025

Formula

From Amiram Eldar, Jun 27 2025: (Start)
a(n) = A003056(n) - 1.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi/4 (A003881). (End)

A096954 Numerators of rational approximation to Pi/4 from Machins's formula.

Original entry on oeis.org

951, 1339849258, 9569810428334921, 19132121777295048135244, 81963468350564671450762204559, 1287504688596138051498743351405666674, 23901655485793371607250742363386659018053931
Offset: 0

Views

Author

Wolfdieter Lang, Jul 23 2004

Keywords

Comments

Machin's formula: Pi/4 = 4*arctan(1/5) - arctan(1/239).
Denominators are given in A096955.

Examples

			a(2)/A096955(2) = 9569810428334921/12184551018734375 = .78540...
		

References

  • W. Walter, Analysis I (in German), Springer, 3. Auflage, 1992; p. 216.

Crossrefs

Formula

a(n)=numerator(M(n)), with M(n)=4*arctan(1/5, n) - arctan(1/239, n) with arctan(x, n):=sum((((-1)^k)*x^(2k+1))/(2*k+1), k=0..n).

A105531 Decimal expansion of arctan(1/3).

Original entry on oeis.org

3, 2, 1, 7, 5, 0, 5, 5, 4, 3, 9, 6, 6, 4, 2, 1, 9, 3, 4, 0, 1, 4, 0, 4, 6, 1, 4, 3, 5, 8, 6, 6, 1, 3, 1, 9, 0, 2, 0, 7, 5, 5, 2, 9, 5, 5, 5, 7, 6, 5, 6, 1, 9, 1, 4, 3, 2, 8, 0, 3, 0, 5, 9, 3, 5, 6, 7, 5, 6, 2, 3, 7, 4, 0, 5, 8, 1, 0, 5, 4, 4, 3, 5, 6, 4, 0, 8, 4, 2, 2, 3, 5, 0, 6, 4, 1, 3, 7, 4, 4, 3, 9, 0, 0, 7
Offset: 0

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Apr 12 2005

Keywords

Comments

arctan(1/3) + A073000 = 2*arctan(1/3) + A105533 = Pi/4.

Examples

			0.3217505543966421934014046143...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 242.

Crossrefs

Cf. A003881 (Pi/4), A073000 (arctan(1/2)), A105533 (arctan(1/7)).

Programs

Formula

From Peter Bala, Feb 04 2015: (Start)
Equals (1/3)*Sum_{k >= 0} (-1)^k/((2*k + 1)*9^k).
Define a pair of integer sequences A(n) = 9^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} (-1)^k/((2*k + 1)*9^k). Both sequences satisfy the same recurrence equation u(n) = (32*n + 20)*u(n-1) + 36*(2*n - 1)^2*u(n-2). From this observation we find the continued fraction expansion arctan(1/3) = (1/3)*(1 - 2/(54 + 36*3^2/(84 + 36*5^2/(116 + ... + 36*(2*n - 1)^2/((32*n + 20) + ...))))).
Equals (3/10) * Sum_{k >= 0} (2/5)^k/( (2*k + 1)*binomial(2*k,k) ).
Define a pair of integer sequences C(n) = 10^n*(2*n + 1)!/n! and D(n) = C(n)*Sum_{k = 0..n} (2/5)^k/( (2*k + 1)*binomial(2*k,k) ). Both sequences satisfy the same recurrence equation u(n) = (44*n + 20)*u(n-1) - 80*n*(2*n - 1)*u(n-2). From this observation we obtain the continued fraction expansion arctan(1/3) = (3/10)*( 1 + 4/(60 - 480/(108 - 1200/(152 - ... - 80*n*(2*n - 1)/((44*n + 20) - ...))))). (End)
Equals Sum_{k>=1} arctan(L(4*k+2)/F(4*k+2)^2) where L=A000032 and F=A000045. See also A033890 and A246453. - Michel Marcus, Mar 29 2016 [corrected by Jason Yuen, Jan 18 2025]
From Amiram Eldar, Aug 09 2020: (Start)
Equals Sum_{k>=2} arctan(1/(2*k^2)) = Sum_{k>=2} (-1)^k arctan(2/k^2).
Equals Integral_{x=1..2} 1/(x^2 + 1) dx. (End)
Equals Sum_{n>=0} arctan(1/F(2*n+5)) = Sum_{n>=0} (-1)^n arctan(F(2*n+1)) where F=A000045. - Gleb Koloskov, Oct 01 2021

A113406 Half the number of integer solutions to x^2 + 4 * y^2 = n.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 6, 2, 0, 0, 4, 0
Offset: 1

Views

Author

Michael Somos, Oct 28 2005

Keywords

Examples

			x + 2*x^4 + 2*x^5 + 2*x^8 + x^9 + 2*x^13 + 2*x^16 + 2*x^17 + 4*x^20 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 32.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.

Crossrefs

Programs

  • Mathematica
    s = (EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^4] - 1)/(2 q) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, qfrep( [1, 0; 0, 4], n)[n])}
    
  • PARI
    {a(n) = if( n<1, 0, if( n%4==1, sumdiv( n, d, (-1)^(d\2)), if( n%4==0, 2 * sumdiv( n, d, kronecker( -4, d)))))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], if( p = A[k,1], e = A[k,2]; if( p==2, 2 * (e>1), if( p%4==3, (1 + (-1)^e) / 2, e+1)))))}

Formula

a(n) is multiplicative with a(2) = 0, a(2^e) = 2 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4)
G.f.: (theta_3(q) * theta_3(q^4) - 1) / 2.
a(4*n + 2) = a(4*n + 3) = 0. A004531(n) = 2 * a(n) if n>0. a(4*n + 1) = A008441(n). A004018(n) = 2 * a(4*n) if n>0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/4 = 0.785398... (A003881). - Amiram Eldar, Oct 15 2022

A196521 Decimal expansion of Pi/4-log(2)/2.

Original entry on oeis.org

4, 3, 8, 8, 2, 4, 5, 7, 3, 1, 1, 7, 4, 7, 5, 6, 5, 4, 9, 0, 7, 0, 4, 4, 7, 8, 5, 0, 9, 0, 7, 8, 7, 4, 3, 7, 0, 1, 1, 5, 4, 2, 2, 8, 2, 6, 6, 3, 6, 4, 8, 8, 2, 8, 1, 8, 3, 3, 9, 6, 1, 4, 3, 3, 3, 0, 2, 5, 7, 2, 9, 0, 5, 8, 6
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Examples

			0.438824573117475654907044785090787437011542282663648828183396143330257...
		

References

  • L. B. W. Jolley, Summation of series, Dover Publications Inc., New York, 1961, p. 14 (eq. 72).

Crossrefs

Cf. A003881, A016655 (10*log(2)/2), A033264.
Cf. A231902 (Pi/4+log(2)/2), A342316.

Programs

Formula

Equals 1 - 1/2 - 1/3 + 1/4 + 1/5 - ....
Equals Sum_{n>=0} 2/((4*n+2)*(4*n+3)). - Peter Luschny, Dec 06 2013
Equals Sum_{n>=1} (-1)^(n+1)/((2*n-1)*(2*n)). - Robert FERREOL, Dec 14 2015
Equals Integral_{x=0..1} (arctan(x)) dx = Integral_{x=0..Pi/4} (x / cos(x)^2) dx = Integral_{x=0..1/sqrt(2)} (arcsin(x)/(1-x^2)^(3/2)) dx. - Robert FERREOL, Dec 14 2015
Equals Integral_{x>=0} (exp(x) - 1)/(exp(2*x) + 1) dx. - Peter Bala, Nov 01 2019
From Bernard Schott, Sep 07 2020: (Start)
Equals Sum_{n>=1} (-1)^(n*(n-1)/2) / n [compare with A231902 formula].
Equals Sum_{n>=0} (8*n+5) / (4*(n+1)*(2*n+1)*(4*n+1)*(4*n+3)). (End)
Equals Sum_{k>=1} A033264(k)/(k*(k+1)) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
From Peter Bala, Mar 04 2025: (Start)
Equals (1/2) * A342316.
Equals Integral_{x = 0..1} x/(x^2 - 2*x + 2) = Integral_{x = 0..1} x*(1 + x)/(2 - x^2*(1 - x)) dx.
Equals (5/2)*Sum_{n >= 1} 1/(n*binomial(3*n, n)*2^n). The first 10 terms of the series gives the approximate value 0.43882457311(68...), correct to 11 decimal places. (End)

A196522 Decimal expansion of Pi*(1+sqrt(2))/8.

Original entry on oeis.org

9, 4, 8, 0, 5, 9, 4, 4, 8, 9, 6, 8, 5, 1, 9, 9, 3, 5, 6, 8, 4, 8, 1, 5, 5, 4, 6, 6, 6, 7, 5, 2, 4, 5, 7, 2, 8, 5, 1, 4, 7, 3, 8, 8, 6, 0, 9, 3, 8, 4, 9, 5, 0, 5, 5, 0, 7, 5, 4, 2, 5, 2, 4, 9, 0, 8, 0, 3, 1, 3, 9, 9, 9, 2, 3, 2, 1, 0, 3, 6, 3, 6, 5, 0, 4, 2, 0, 2, 2, 0, 0, 1, 3, 3, 6, 0, 2, 8
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Comments

This is the mean of two Dirichlet L=functions modulo m=8 at s=1, one with character (1,0,-1,0,1,0,-1,0) as in A101455, the other with character (1,0,1,0,-1,0,-1,0).
The area of a circle circumscribed in a unit-area regular octagon. - Amiram Eldar, Nov 05 2020

Examples

			0.948059448968519935684815...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
  • L. B. W. Jolley, Summation of series, Dover (1961), eq. 78 page 16 and eq. 264 page 48.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)*(1+Sqrt(2))/8; // G. C. Greubel, Oct 05 2018
  • Mathematica
    RealDigits[Pi*(1+Sqrt[2])/8,10,120][[1]] (* Harvey P. Dale, May 31 2013 *)
  • PARI
    default(realprecision, 100); Pi*(1+sqrt(2))/8 \\ G. C. Greubel, Oct 05 2018
    

Formula

Equals (1 - 1/7) + (1/9 - 1/15) + ... + (1/(1+8*k) - 1/(7+8*k)) + ... = (A093954 + A003881)/2.
Equals Sum_{n >= 0} (8*k + 6)/((8*n + 1)*(8*n + 8*k + 7)) - Sum_{n = 0..k-1} 1/(8*n + 7), for positive integer k. - Peter Bala, Jul 10 2024

A244978 Decimal expansion of Pi/32.

Original entry on oeis.org

0, 9, 8, 1, 7, 4, 7, 7, 0, 4, 2, 4, 6, 8, 1, 0, 3, 8, 7, 0, 1, 9, 5, 7, 6, 0, 5, 7, 2, 7, 4, 8, 4, 4, 6, 5, 1, 3, 1, 1, 6, 1, 5, 4, 3, 7, 3, 0, 4, 7, 2, 0, 5, 6, 9, 0, 5, 4, 6, 7, 0, 1, 8, 5, 0, 9, 6, 1, 9, 2, 6, 2, 6, 9, 6, 4, 4, 4, 0, 3, 1, 2, 0, 7, 1, 2, 6, 0, 8, 8, 2, 9, 1, 9, 4, 1, 1, 5, 8, 3, 7, 4, 4, 4, 2, 1
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.0981747704246810387019576057274844651311615437304720569054670185096...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

Formula

Equals Integral_{x = 0..1} x^2/(1 + x^2)^3 dx.
Also equals beta(3/2, 1/2)/16, where 'beta' is Euler's beta function.
From Peter Bala, Oct 27 2019: (Start)
Equals Integral_{x = 0..1} x^4*sqrt(1 - x^2) dx = Integral_{x = 0..1} x^5*sqrt(1 - x^4) dx = Integral_{x = 0..1} x^7*sqrt(1 - x^16) dx.
Equals Integral_{x >= 0} x^4/(1 + x^2)^4 dx. (End)
From Amiram Eldar, Jul 13 2020: (Start)
Equals Integral_{x=0..oo} dx/(x^2 + 4)^2.
Equals Sum_{k>=1} sin(k)^3*cos(k)^3/k. (End)
From Peter Bala, Dec 08 2021: (Start)
Pi/32 = Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9)).
Applying Euler's series transformation to this alternating sum gives
Pi/32 = Sum_{n >= 1} 2^(n-3)*n*(n+1)/((2*n+3)*binomial(2*n+2, n+1)). (End)

A199401 Decimal expansion of constant Product_{p>=3} (1 - (-1)^((p-1)/2)/(p-1)). Hardy-Littlewood constant of x^2 + 1.

Original entry on oeis.org

1, 3, 7, 2, 8, 1, 3, 4, 6, 2, 8, 1, 8, 2, 4, 6, 0, 0, 9, 1, 1, 2, 1, 9, 2, 6, 9, 6, 7, 2, 7, 0, 1, 8, 8, 6, 8, 1, 7, 8, 3, 3, 3, 1, 0, 1, 2, 5, 5, 7, 5, 9, 5, 5, 7, 9, 3, 6, 2, 3, 4, 1, 4, 7, 3, 2, 7, 8, 4, 2, 2, 2, 6, 7, 1, 7, 3, 7, 0, 2, 3, 1, 7, 2, 7, 7, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 05 2011

Keywords

Comments

Arises in studying A002496.
The constant is Product_{primes p} (1-chi(p)/(p-1)) where chi is the Dirichlet character A101455. Its Euler expansion is (1/(L(m=4,r=2,s=1)* zeta(m=4,n=3,s=2)) *Product_{s>=2} zeta(m=4,n=1,s)^gamma(s), where L and zeta are the functions tabulated in arXiv:1008.2547 and gamma is the sequence A001037. In particular L(m=4,r=2,s=1) = A003881 and zeta(m=4,n=1,s=2)=A175647. - R. J. Mathar, Nov 29 2011

Examples

			1.372813462818246009112192696727...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 85.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 264.

Crossrefs

Cf. A002496.
Equals 2*constant given by A331941.

Programs

  • PARI
    \\ See Belabas, Cohen link. Run as HardyLittlewood2(x^2+1) after setting the required precision.

Extensions

Extended title, a(30) and beyond from Hugo Pfoertner, Feb 16 2020

A240935 Decimal expansion of 3*sqrt(3)/(4*Pi).

Original entry on oeis.org

4, 1, 3, 4, 9, 6, 6, 7, 1, 5, 6, 6, 3, 4, 4, 0, 3, 7, 1, 3, 3, 4, 9, 4, 8, 7, 3, 7, 3, 4, 7, 2, 7, 0, 8, 1, 0, 4, 8, 0, 3, 9, 8, 6, 0, 2, 7, 4, 9, 8, 0, 4, 8, 9, 5, 9, 9, 5, 2, 4, 5, 1, 5, 2, 1, 8, 2, 7, 2, 7, 2, 7, 6, 0, 1, 9, 5, 2, 3, 4, 6, 1, 3, 0, 2, 8, 5, 0, 2, 1, 6, 1, 7, 3, 7, 8, 1, 6, 6, 9, 0, 5, 7, 7, 3
Offset: 0

Views

Author

Rick L. Shepherd, Aug 03 2014

Keywords

Comments

A triangle of maximal area inside a circle is necessarily an inscribed equilateral triangle. This constant is the ratio of the triangle's area to the circle's area. In general, the ratio of an arbitrary triangle's area to the area of its unique Steiner ellipse, which has the least area of any circumscribed ellipse (an equilateral triangle's Steiner ellipse is a circle).
Also the probability that the distance between 2 randomly selected points within a circle will be larger than the radius. - Amiram Eldar, Mar 03 2019

Examples

			0.4134966715663440371334948737347270810480...
		

Crossrefs

Programs

  • Maple
    Digits:=100: evalf(3*sqrt(3)/(4*Pi)); # Wesley Ivan Hurt, Aug 03 2014
  • Mathematica
    Flatten[RealDigits[3 Sqrt[3]/(4 Pi), 10, 100, -1]] (* Wesley Ivan Hurt, Aug 03 2014 *)
  • PARI
    default(realprecision, 120);
    3*sqrt(3)/(4*Pi)

Formula

3*sqrt(3)/(4*Pi) = 3*A002194/(4*A000796).
Equals A093604^2. - Hugo Pfoertner, May 18 2024

A381152 Decimal expansion of the isoperimetric quotient of a regular pentagon.

Original entry on oeis.org

8, 6, 4, 8, 0, 6, 2, 6, 5, 9, 7, 7, 2, 0, 9, 9, 6, 7, 2, 3, 1, 1, 8, 2, 0, 6, 5, 8, 5, 8, 6, 2, 3, 3, 3, 7, 0, 3, 8, 2, 8, 5, 5, 5, 6, 9, 0, 2, 2, 8, 3, 9, 9, 6, 2, 1, 3, 2, 0, 9, 5, 7, 3, 9, 8, 9, 3, 3, 2, 7, 0, 9, 3, 4, 1, 1, 8, 7, 1, 2, 9, 6, 4, 8, 0, 4, 0, 2, 3, 3
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

The isoperimetric quotient of a closed curve is equal to 4*Pi*A/p^2, where A is the area enclosed by the curve and p is its perimeter. For a regular n-gon, this is equivalent to Pi/(n*tan(Pi/n)).
The isoperimetric quotient of a circle is 1.

Examples

			0.86480626597720996723118206585862333703828555690228...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381156 (11-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(5*Tan[Pi/5]), 10, 100]]

Formula

Equals Pi/(5*tan(Pi/5)) = (Pi/5)*A019952.
Equals (4/25)*Pi*A102771.
Previous Showing 41-50 of 107 results. Next