cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A115217 Diagonal sums of "correlation triangle" for 2^n.

Original entry on oeis.org

1, 2, 6, 13, 30, 62, 133, 270, 558, 1125, 2286, 4590, 9253, 18542, 37230, 74533, 149358, 298862, 598309, 1196910, 2394990, 4790565, 9583470, 19168110, 38340901, 76684142, 153377646, 306759973, 613538670, 1227086702, 2454210853
Offset: 0

Views

Author

Paul Barry, Jan 16 2006

Keywords

Comments

Diagonal sums of number triangle A003983.

Crossrefs

Cf. A003983.

Programs

  • Mathematica
    LinearRecurrence[{2,2,-3,-2,-2,4},{1,2,6,13,30,62},40] (* Harvey P. Dale, Oct 18 2021 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} [j<=k]*2^(k-j)*[j<=n-2k]*2^(n-2k-j).
From Paul Barry, Jan 18 2006: (Start)
G.f.: 1/((1-2*x)*(1-2*x^2)*(1-x^3)).
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) - 2*a(n-4) - 2*a(n-5) + 4*a(n-6). (End)
E.g.f.: (exp(x)*(7 + 48*exp(x)) + 2*exp(-x/2)*cos(sqrt(3)*x/2) - 36*cosh(sqrt(2)*x) - 30*sqrt(2)*sinh(sqrt(2)*x))/21. - Stefano Spezia, Aug 28 2025

A157458 Triangle, read by rows, double tent function: T(n,k) = min(1 + 2*k, 1 + 2*(n-k), n).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 4, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 6, 5, 3, 1, 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 5, 7, 8, 7, 5, 3, 1, 1, 3, 5, 7, 9, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 10, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 12, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 13, 11, 9, 7, 5, 3, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 01 2009

Keywords

Comments

The general form of this, and related triangular sequences, takes the form A(n, k, m) = (m*(n-k) + 1)*A(n-1, k-1, m) + (m*k + 1)*A(n-1, k, m) + m*f(n, k)* A(n-2, k-1, m), where f(n,k) is a polynomial in n and k.
Row sums are: 0, 2, 4, 8, 12, 18, 24, 32, 40, 50, 60, ... = A007590(n+1). - N. J. A. Sloane, Aug 27 2009

Examples

			Triangle begins as:
  0;
  1, 1;
  1, 2, 1;
  1, 3, 3, 1;
  1, 3, 4, 3, 1;
  1, 3, 5, 5, 3, 1;
  1, 3, 5, 6, 5, 3, 1;
  1, 3, 5, 7, 7, 5, 3, 1;
  1, 3, 5, 7, 8, 7, 5, 3, 1;
  1, 3, 5, 7, 9, 9, 7, 5, 3, 1;
  1, 3, 5, 7, 9, 10, 9, 7, 5, 3, 1;
		

Crossrefs

Programs

  • Maple
    T := proc(m,n) return min(1+2*m, 1+2*(n-m), n): end: seq(seq(T(m,n),m=0..n),n=0..14); # Nathaniel Johnston, Apr 29 2011
  • Mathematica
    T[n_, k_]:= Min[1+2*k, 1+2*(n-k), n]; Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten

Formula

T(n, k) = min(1 + 2*k, 1 + 2*(n - k), n).
From Yu-Sheng Chang, May 19 2020: (Start)
O.g.f.: F(z,v) = (1+v)*z/((1-v*z-1)*(1-z)*(1-v*z^2)).
T(n,k) = [v^k] (1+v)*(2*v^(n+1)+2-((sqrt(v)-1)^2 * (-1)^n + (sqrt(v)+1)^2) * v^((1/2)*n))/(2*(v-1)^2). (End)

Extensions

Edited by N. J. A. Sloane, Aug 27 2009
More terms from and partially edited by G. C. Greubel, May 21 2020

A321126 T(n,k) = max(n + k - 1, n + 1, k + 1), square array read by antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 4, 5, 6, 7, 6, 5, 5, 5, 6, 7, 8, 7, 6, 6, 6, 6, 7, 8, 9, 8, 7, 7, 7, 7, 7, 8, 9, 10, 9, 8, 8, 8, 8, 8, 8, 9, 10, 11, 10, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13
Offset: 0

Views

Author

Keywords

Comments

T(n,k) - 1 is the maximum degree of d in the three-variable bracket polynomial (A,B,d) for the two-bridge knot with Conway's notation C(n,k). Hence, T(n,k) is the maximum number of Jordan curves that are obtained by splitting the crossings of such knot diagram.

Examples

			Square array begins:
    1,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
    2,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
    3,  3,  3,  4,  5,  6,  7,  8,  9, 10, ...
    4,  4,  4,  5,  6,  7,  8,  9, 10, 11, ...
    5,  5,  5,  6,  7,  8,  9, 10, 11, 12, ...
    6,  6,  6,  7,  8,  9, 10, 11, 12, 13, ...
    7,  7,  7,  8,  9, 10, 11, 12, 13, 14, ...
    8,  8,  8,  9, 10, 11, 12, 13, 14, 15, ...
    9,  9,  9, 10, 11, 12, 13, 14, 15, 16, ...
   10, 10, 10, 11, 12, 13, 14, 15, 16, 17, ...
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

T(n,1) = degree of the (n+1)-th row polynomial in A300453.
T(n,k) = degree of the n-th row polynomials in A300454 and A321127, k = 2,n, respectively.

Programs

  • Mathematica
    Table[Max[k + 1, n - 1, n - k + 1], {n, 0, 10}, {k, 0, n}] // Flatten
  • Maxima
    create_list(max(k + 1, n - 1, n - k + 1), n, 0, 10, k, 0, n);

Formula

T(n,k) = T(k,n).
T(n,k) = A051125(n+1,k+1) for 0 <= k <= 2, n >= 0, and T(n,k) = A051125(n+1,k+1) + A003983(n-2,k-2) for k >= 3, n >= 3.
T(n,n) = A004280(n+1).
G.f.: (1 - (2*x - x^2)*y + (x - 2*x^2 + x^3)*y^2 + (x^2 - x^3)*y^3)/(((1 - x)*(1 - y))^2).

A107044 A symmetric factorial triangle, read by rows: T(n,k) = min(n,k)!.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 6, 2, 1, 1, 2, 6, 6, 2, 1, 1, 2, 6, 24, 6, 2, 1, 1, 2, 6, 24, 24, 6, 2, 1, 1, 2, 6, 24, 120, 24, 6, 2, 1, 1, 2, 6, 24, 120, 120, 24, 6, 2, 1, 1, 2, 6, 24, 120, 720, 120, 24, 6, 2, 1, 1, 2, 6, 24, 120, 720, 720, 120, 24, 6, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, May 09 2005

Keywords

Examples

			First few rows of the triangle are:
1
1, 1
1, 2, 1
1, 2, 2, 1
1, 2, 6, 2, 1
1, 2, 6, 6, 2, 1
1, 2, 6, 24, 6, 2, 1 ...
Row having (1, 2, 3, 2, 1) in A003983 is replaced by (1, 2, 6, 2, 1) in A107044.
		

Crossrefs

Cf. A003983.

Formula

Given A003983, replace each term with its factorial.

Extensions

Edited by Michael Kleber, Apr 06 2009
Corrected by Philippe Deléham, Nov 07 2011

A144480 T(n,k) = binomial(n, k)*min(k + 1, n - k + 1), triangle read by rows (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 18, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 45, 80, 45, 12, 1, 1, 14, 63, 140, 140, 63, 14, 1, 1, 16, 84, 224, 350, 224, 84, 16, 1, 1, 18, 108, 336, 630, 630, 336, 108, 18, 1, 1, 20, 135, 480, 1050, 1512, 1050, 480, 135, 20, 1
Offset: 0

Views

Author

Roger L. Bagula, Oct 11 2008

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   1;
  1,  6,   6,   1;
  1,  8,  18,   8,    1;
  1, 10,  30,  30,   10,    1;
  1, 12,  45,  80,   45,   12,    1;
  1, 14,  63, 140,  140,   63,   14,   1;
  1, 16,  84, 224,  350,  224,   84,  16,   1;
  1, 18, 108, 336,  630,  630,  336, 108,  18,  1;
  1, 20, 135, 480, 1050, 1512, 1050, 480, 135, 20, 1;
  ...
		

Crossrefs

Row sums are in A245560.

Programs

  • Mathematica
    Table[Table[Binomial[n, m]*If[m <= Floor[n/2], 1 + m, 1 + n - m], {m, 0, n}], {n, 0, 10}] // Flatten
  • Maxima
    create_list(binomial(n, k)*min(k + 1, n - k + 1), n, 0, 10, k, 0, n); /* Franck Maminirina Ramaharo, Dec 10 2018 */

Formula

If k <= floor(n/2), then T(n,k) = binomial(n, k)*(k + 1), otherwise T(n,k) = binomial(n, k)*(n - k - 1).
T(n,k) = A007318(n,k)*A003983(k+1,n-k+1), i.e., term-by term product of Pascal's triangle A007318 and A003983 as a triangle.

Extensions

Entry revised by N. J. A. Sloane, Aug 07 2014
Edited by Franck Maminirina Ramaharo, Dec 10 2018

A157457 Read n-th row of triangle in A157458 and regard it as the expansion of a number in base n+1.

Original entry on oeis.org

0, 3, 16, 125, 1116, 12943, 182400, 3080025, 60524200, 1357997531, 34237168560, 957927505717, 29446184348868, 986272776455415, 35746439807927296, 1393753996031259953, 58165330905054360720, 2586788074128361802419
Offset: 0

Views

Author

Roger L. Bagula, Mar 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    t[n_, m_] =Min[1 + 2*m, 1 + 2*(n - m), n];
    Table[FromDigits[{Table[t[n, m], {m, 0, n}], n + 1}, n + 1], {n, 0, 20}]

Extensions

Edited by N. J. A. Sloane, Aug 27 2009

A351154 a(n) is the permanent of the n X n matrix M(n) that is defined as M[i,j,n] = A351153(n, min(i, j)) + abs(i - j).

Original entry on oeis.org

1, 1, 7, 169, 10388, 1324344, 305668180, 116145817656, 67770421715800, 57594670663866124, 68393751368082128320, 109765035421144948709232, 231657098706747226470685920, 628412716450312334529486247152, 2149132484027947970192241804640128, 9113755489596517688997731211571700256
Offset: 0

Views

Author

Stefano Spezia, Feb 02 2022

Keywords

Comments

Conjectures: (Start)
det(M(0)) = det(M(1)) = 1 and det(M(n)) = -(n - 2)! for n > 1.
abs(det(M(n))) = abs(A159333(n-2)). (End)

Examples

			a(3) = 169:
    1    2    3
    2    4    5
    3    5    6
a(4) = 10388:
    1    2    3    4
    2    5    6    7
    3    6    8    9
    4    7    9   10
		

Crossrefs

Programs

  • Mathematica
    A351153[n_,k_]:=n(k-1)-k(k-3)/2; M[i_,j_,n_]:=A351153[n,Min[i,j]]+Abs[i-j]; a[n_]:=Permanent[Table[M[i,j,n],{i,n},{j,n}]]; Join[{1},Array[a,15]]
  • PARI
    t(n, k) = n*(k-1) - k*(k-3)/2; \\ A351153
    a(n) = matpermanent(matrix(n, n, i, j, t(n, min(i, j)) + abs(i - j))); \\ Michel Marcus, Feb 03 2022

A115296 Skew version of correlation triangle for constant sequence 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 2, 2, 1, 0, 0, 0, 1, 3, 2, 1, 0, 0, 0, 0, 2, 3, 2, 1, 0, 0, 0, 0, 1, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 4, 3, 2, 1, 0, 0, 0, 0, 0, 1, 3, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 2, 4, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 1, 3, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 4, 5, 4, 3, 2, 1
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Row sums are A001399. Diagonal sums are A025795.

Examples

			Triangle begins
1;
0,1;
0,1,1;
0,0,2,1;
0,0,1,2,1;
0,0,0,2,2,1;
0,0,0,1,3,2,1;
0,0,0,0,2,3,2,1;
		

Formula

G.f.: 1/((1-x*y)*(1-x^2*y)*(1-x^3*y^2)); Number triangle T(n, k)=sum{j=0..k, [j<=n-k]*[j<=2k-n]}; T(n, k)=A003983(k, n-k).

A129804 a(0) = 1, a(1) = 2; for n>0, a(2*n) = 3*a(2*n-1) - a(2*n-2), a(2*n+1) = 3*a(2*n) - a(2*n-1) - a(n-1).

Original entry on oeis.org

1, 2, 5, 12, 31, 79, 206, 534, 1396, 3642, 9530, 24917, 65221, 170667, 446780, 1169467, 3061621, 8014862, 20982965, 54932637, 143814946, 376508559, 985710731, 2580614104, 6756131581, 17687755722, 46307135585, 121233585812
Offset: 0

Views

Author

Paul Curtz, May 19 2007

Keywords

Comments

Equals the eigensequence of the correlation triangle, A003983. - Gary W. Adamson, Mar 14 2011

Crossrefs

Cf. A003983.

Programs

  • Maple
    a:=proc(n) if n=0 or n=1 then n+1 elif n mod 2 = 0 then 3*a(n-1)-a(n-2) else 3*a(n-1)-a(n-2)-a((n-3)/2) fi end: seq(a(n),n=0..30); - Emeric Deutsch, May 20 2007
  • PARI
    {m=27; v=vector(m+1); v[1]=1; v[2]=2; for(n=2, m, k=3*v[n]-v[n-1]; if(n%2==1, k=k-v[(n-1)/2]); v[n+1]=k); print(v)} /* Klaus Brockhaus, May 20 2007 */

Extensions

More terms from Emeric Deutsch and Klaus Brockhaus, May 20 2007

A157455 Number generated by regarding the numbers in row n of A157454 as digits of a base n number.

Original entry on oeis.org

1, 3, 19, 125, 1141, 12943, 182743, 3080025, 60530761, 1357997531, 34237329611, 957927505717, 29446189175677, 986272776455415, 35746439978786671, 1393753996031259953, 58165330912030118161, 2586788074128361802419
Offset: 1

Views

Author

Roger L. Bagula, Mar 01 2009

Keywords

Comments

Note that for odd n, the digits will include n itself.

Examples

			Row 4 of A157454 is 1,3,3,1. 1331 in base 4 = 4^3 + 3*4^2 + 3*4 + 1 = 125, so a(4) = 125.
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] =Min[1 + 2*m, 1 + 2*(n - m)];
    Table[FromDigits[{Table[t[n, m], {m, 0, n}], n + 1}, n + 1], {n, 0, 20}]

Formula

t(n,m)=Min[2*m - 1, 2*(n - m) + 1]; a(n)=FromDigits[{Table[t[n, m], {m, 1, n}], n}, n].

Extensions

Edited by Franklin T. Adams-Watters, Sep 25 2011
Previous Showing 31-40 of 42 results. Next