cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 196 results. Next

A282015 Coefficients in q-expansion of E_4^5, where E_4 is the Eisenstein series shown in A004009.

Original entry on oeis.org

1, 1200, 586800, 148641600, 20400279600, 1439038231200, 46093334702400, 861697555612800, 10894180752126000, 102121497049868400, 755966260027216800, 4623420005167550400, 24151632380348692800, 110516281318431693600, 451789183426135939200
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 208.

Crossrefs

Cf. A004009 (E_4), A008410 (E_4^2), A008411 (E_4^3), A282012 (E_4^4), this sequence (E_4^5).

Programs

  • Mathematica
    terms = 15;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^5 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

G.f.: (1 + 240 Sum_{i>=1} i^3 q^i/(1-q^i))^5.
13200 * A013967(n) = 174611 * a(n) - 209520000 * A037945(n) for n > 0.

A282287 Coefficients in q-expansion of E_4*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -768, -19008, 67329024, 4834170816, 137655866880, 2122110676224, 21418943158272, 158760815970240, 928988742914304, 4512155542392960, 18847838706545664, 69519052583699712, 230952254655327744, 701948326302761472, 1975789128222443520
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2017

Keywords

Crossrefs

Cf. A004009 (E_4), A013973 (E_6), A008411 (E_4^3), A058550 (E_4^2*E_6 = E_14), this sequence (E_4*E_6^2), A282253 (E_6^3).
Cf. A282102 (E_2*E_10), A058550 (E_4*E_10), this sequence (E_6*E_10).

Programs

  • Mathematica
    terms = 16;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

A282099 Coefficients in q-expansion of (E_2^2*E_4 - 2*E_2*E_6 + E_4^2)/1728, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 36, 252, 1168, 3150, 9072, 16856, 37440, 61317, 113400, 161172, 294336, 371462, 606816, 793800, 1198336, 1420146, 2207412, 2476460, 3679200, 4247712, 5802192, 6436872, 9434880, 9844375, 13372632, 14900760, 19687808, 20511990, 28576800, 28630112, 38347776
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2017

Keywords

Comments

Multiplicative because A001158 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^5*6^2 + 2^5*3^2 + 3^5*2^2 + 6^5*1^2 = 9072.
		

Crossrefs

Cf. A282097 (phi_{3, 2}), this sequence (phi_{5, 2}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282208 (E_2^2*E_4), A282096 (E_2*E_6), A008410 (E_8 = E_4^2).
Cf. A001158 (sigma_3(n)), A281372 (n*sigma_3(n)), this sequence (n^2*sigma_3(n)), A282213 (n^3*sigma_3(n)).

Programs

  • Mathematica
    a[0]=0;a[n_]:=(n^2)*DivisorSigma[3,n];Table[a[n],{n,0,32}] (* Indranil Ghosh, Feb 21 2017 *)
    nmax = 40; CoefficientList[Series[Sum[k^5*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    a(n) = if (n==0, 0, n^2*sigma(n, 3)); \\ Michel Marcus, Feb 21 2017

Formula

G.f.: phi_{5, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A282208(n) - 2*A282096(n) + A008410(n))/1728. - Seiichi Manyama, Feb 19 2017
a(n) = n^2*A001158(n) for n > 0. - Seiichi Manyama, Feb 19 2017
Sum_{k=1..n} a(k) ~ Pi^4 * n^6 / 540. - Vaclav Kotesovec, May 09 2022
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(3*e+3)-1)/(p^3-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-5). (End)
G.f.: Sum_{k>=1} k^5*x^k*(1 + x^k)/(1 - x^k)^3. - Vaclav Kotesovec, Aug 02 2025

A282211 Coefficients in q-expansion of (6*E_2^2*E_4 - 8*E_2*E_6 + 3*E_4^2 - E_2^4)/6912, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 24, 108, 448, 750, 2592, 2744, 7680, 9477, 18000, 15972, 48384, 30758, 65856, 81000, 126976, 88434, 227448, 137180, 336000, 296352, 383328, 292008, 829440, 484375, 738192, 787320, 1229312, 731670, 1944000, 953312, 2064384, 1724976
Offset: 0

Views

Author

Seiichi Manyama, Feb 09 2017

Keywords

Comments

Multiplicative because A000203 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^4*6^3 + 2^4*3^3 + 3^4*2^3 + 6^4*1^3 = 2592.
		

Crossrefs

Cf. this sequence (phi_{4, 3}), A282213 (phi_{6, 3}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282208 (E_2^2*E_4), A282096 (E_2*E_6), A008410 (E_4^2 = E_8), A282210 (E_2^4).
Cf. A000203 (sigma(n)), A064987 (n*sigma(n)), A282097 (n^2*sigma(n)), this sequence (n^3*sigma(n)).

Programs

  • Mathematica
    a[0]=0;a[n_]:=(n^3)*DivisorSigma[1,n];Table[a[n],{n,0,33}] (* Indranil Ghosh, Feb 21 2017 *)
  • PARI
    a(n) = if (n==0, 0, n^3*sigma(n)); \\ Michel Marcus, Feb 21 2017

Formula

G.f.: phi_{4, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (6*A282208(n) - 8*A282096(n) + 3*A008410(n) - A282210(n))/6912.
a(n) = n^3*A000203(n) for n > 0. - Seiichi Manyama, Feb 19 2017
G.f.: A(q) = Sum_{n >= 1} n^3*q^n*(q^(3*n) + 11*q^(2*n) + 11*q^n + 1)/(1 - q^n)^5. A faster converging series may be found by applying the operator x*d/dx once to equation 5 in Arndt, setting x = 1, and then applying the operator q*d/dq three times to the resulting equation. - Peter Bala, Jan 21 2021
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^2/30 = 0.328986... . - Amiram Eldar, Dec 08 2022
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(3*e) * (p^(e+1)-1)/(p-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-4). (End)
G.f.: A(q) = Sum_{n >= 1} n^4*q^n*(q^(2*n) + 4*q^n + 1)/(1 - q^n)^4. - Mamuka Jibladze, Aug 27 2024

A341871 Coefficients of the series whose 48th power equals E_2(x)^2/E_4(x), where E_2(x) and E_4(x) are the Eisenstein series A006352 and A004009.

Original entry on oeis.org

1, -6, 558, -88884, 15433662, -2864048616, 552921962724, -109731286565040, 22220439670517814, -4569456313225317114, 951159953810624453208, -199945837161334089352548, 42373766861587365894611604
Offset: 0

Views

Author

Peter Bala, Feb 22 2021

Keywords

Comments

It is easy to see that E_2(x)^2/E_4(x) == 1 - 48*Sum_{k >= 1} (k + 5*k^3)*x^k/(1 - x^k) (mod 288), and also that the integer k + 5*k^3 is always divisible by 6. Hence, E_2(x)^2/E_4(x) == 1 (mod 288). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)^2/E_4(x))^(1/48) = 1 - 6*x + 558*x^2 - 88884*x^3 + 15433662*x^4 - ... has integer coefficients.
Note that (E_2(x)^2/E_4(x))^(1/48) = (E_2(x)^4/E_8(x))^(1/96).

Crossrefs

Programs

  • Maple
    E(2,x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)^2/E(4,x))^(1/48), x, 20):
    seriestolist(%);

A341875 Coefficients of the series whose 24th power equals E_2(x)*E_4(x)/E_6(x), where E_2(x), E_4(x) and E_6(x) are the Eisenstein series A006352, A004009 and A013973.

Original entry on oeis.org

1, 30, 5310, 2453220, 910100190, 409796742600, 181276113779460, 84362079365838960, 39636500385830239350, 18986938020443181757410, 9186944625290601368703000, 4491611148118819794144792660, 2212757749022582852433835771860, 1097546094982154634980848454416920
Offset: 0

Views

Author

Peter Bala, Feb 23 2021

Keywords

Comments

Since E_2(x)*E_4(x)/E_6(x) == 1 - 24*Sum_{k >= 1} (k - 10*k^3 - 21*k^5)*x^k/(1 - x^k) (mod 144), and since the integer k - 10*k^3 - 21*k^5 is always divisible by 6 it follows that E_2(x)*E_4(x)/E_6(x) == 1 (mod 144). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)*E_4(x)/E_6(x))^(1/24) = 1 + 30*x + 5310*x^2 + 2453220*x^3 + 910100190*x^4 + ... has integer coefficients.
From Peter Bala, Nov 16 2024 (Start):
Expansion of ( E_2(x)*E_8(x)/E_10(x) )^(1/24), where E_k(x) is the Eisenstein series of weight k.
Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_2(x) and E_10(x) lie in P(4) while the series E_8(x) lies in P(16) (Heninger et al.).
We claim that the series (E_2(x)*E_8(x))/E_10(x) belongs to P(24).
Proof.
E_2(x) = 1 - 24*Sum_{n >= 1} sigma_1(n)*x^n.
E_8(x) = 1 + 480*Sum_{n >= 1} sigma_7(n)*x^n.
E_10(x) = 1 - 264*Sum_{n >= 1} sigma_9(n)*x^n.
Hence, E_2(x)*E_8(x)/E_10(x) == 1 + (12^2)*Sum_{n >= 1} (1/6)*(-sigma_1(n) + 20*sigma_7(n) + 11*sigma_9(n))*x^n (mod 12^2) in R. The polynomial (1/6)*(-k + 20*k^7 + 11*k^9) of degree 9 is integer-valued since it takes integer values for 10 consective values of n (e.g., from n = 0 to n = 9).
Hence, E_2(x)*E_8(x)/E_10(x) == 1 (mod 12^2) == 1 (mod (2^4)*(3^2)) in R.
It follows from Heninger et al., Theorem 1, Corollary 2, that the series E_2(x)*E_8(x)/E_10(x) belongs to P((2^3)*3) = P(24). End Proof. (End)

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A008410 (E_8), A013973, A013974 (E_10). A108091 (E_8)^(1/16), A110150 ((E_10)^(1/4)), A289392 ((E_2)^(1/4)), A341871 - A341874, A377973, A377974, A377975, A377976, A377977.

Programs

  • Maple
    E(2,x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
    E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)*E(4,x)/E(6,x))^(1/24), x, 20):
    seriestolist(%);

Formula

a(n) ~ c * exp(2*Pi*n) / n^(23/24), where c = 0.0431061156115657949750305669836959595841497962033916083447436... - Vaclav Kotesovec, Mar 08 2021
Equals the series ( E_2(x)*E_8(x)/E_10(x) )^(1/24). - Peter Bala, Nov 16 2024

A282213 Coefficients in q-expansion of (E_2^3*E_4 - 3*E_2^2*E_6 + 3*E_2*E_4^2 - E_4*E_6)/3456, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 72, 756, 4672, 15750, 54432, 117992, 299520, 551853, 1134000, 1772892, 3532032, 4829006, 8495424, 11907000, 19173376, 24142482, 39733416, 47052740, 73584000, 89201952, 127648224, 148048056, 226437120, 246109375, 347688432, 402320520, 551258624, 594847710
Offset: 0

Views

Author

Seiichi Manyama, Feb 09 2017

Keywords

Comments

Multiplicative because A001158 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^6*6^3 + 2^6*3^3 + 3^6*2^3 + 6^6*1^3 = 54432.
		

Crossrefs

Cf. A282211 (phi_{4, 3}), this sequence (phi_{6, 3}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282586 (E_2^3*E_4), A282595 (E_2^2*E_6), A282101 (E_2*E_4^2), A013974 (E_4*E_6 = E_10).
Cf. A001158 (sigma_3(n)), A281372 (n*sigma_3(n)), A282099 (n^2*sigma_3(n)), this sequence (n^3*sigma_3(n))
Cf. A013662.

Programs

  • Mathematica
    terms = 30;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E2[x]^3*E4[x] - 3 E2[x]^2*E6[x] + 3 E2[x] E4[x]^2 - E4[x] E6[x])/3456 + O[x]^terms // CoefficientList[#, x]&
    (* or: *)
    Table[n^3*DivisorSigma[3, n], {n, 0, terms-1}] (* Jean-François Alcover, Feb 27 2018 *)
    nmax = 30; CoefficientList[Series[Sum[k^6*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    a(n) = if (n, n^3*sigma(n, 3), 0); \\ Michel Marcus, Feb 27 2018

Formula

G.f.: phi_{6, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A282586(n) - 3*A282595(n) + 3*A282101(n) - A013974(n))/3456. - Seiichi Manyama, Feb 19 2017
a(n) = n^3*A001158(n) for n > 0. - Seiichi Manyama, Feb 19 2017
Sum_{k=1..n} a(k) ~ zeta(4) * n^7 / 7. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(3*e) * (p^(3*e+3)-1)/(p^3-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-6). (End)
G.f.: Sum_{k>=1} k^6*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4. - Vaclav Kotesovec, Aug 02 2025

A289636 Coefficients in expansion of -q*E'_4/E_4 where E_4 is the Eisenstein Series (A004009).

Original entry on oeis.org

-240, 53280, -12288960, 2835808320, -654403831200, 151013228757120, -34848505552897920, 8041801037378486400, -1855762905734676483120, 428244362959801779806400, -98823634118413525094402880, 22804995243537595828606337280
Offset: 1

Views

Author

Seiichi Manyama, Jul 09 2017

Keywords

Examples

			a(1) = 1 * A110163(1) = -240,
a(2) = 1 * A110163(1) + 2 * A110163(2) = 53280,
a(3) = 1 * A110163(1) + 3 * A110163(3) = -12288960.
		

Crossrefs

-q*E'_k/E_k: A289635 (k=2), this sequence (k=4), A289637 (k=6), A289638 (k=8), A289639 (k=10), A289640 (k=14).

Programs

  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[-240*x*Sum[k*DivisorSigma[3, k]*x^(k-1), {k, 1, nmax}]/(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
    terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[-D[Ei[4], x]/Ei[4] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)

Formula

a(n) = Sum_{d|n} d * A110163(d) = A289633(n)/6.
a(n) = A288261(n)/3 + 8*A000203(n).
a(n) = -Sum_{k=1..n-1} A004009(k)*a(n-k) - A004009(n)*n.
G.f.: 1/3 * E_6/E_4 - 1/3 * E_2.
a(n) ~ (-1)^n * exp(Pi*sqrt(3)*n). - Vaclav Kotesovec, Jul 09 2017

A282254 Coefficients in q-expansion of (3*E_4^3 + 2*E_6^2 - 5*E_2*E_4*E_6)/1584, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 1026, 59052, 1050628, 9765630, 60587352, 282475256, 1075843080, 3486961557, 10019536380, 25937424612, 62041684656, 137858491862, 289819612656, 576679982760, 1101663313936, 2015993900466, 3577622557482, 6131066257820, 10260044315640
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2017

Keywords

Comments

Multiplicative because A013957 is. - Andrew Howroyd, Jul 25 2018
D. H. Lehmer shows that a(n) == tau(n) (mod 7) for n > 0, where tau is Ramanujan's tau function (A000594). Furthermore, if n == 3, 5, 6 (mod 7) then a(n) == tau(n) (mod 49). See the Wikipedia link below. - Jianing Song, Aug 12 2020

Examples

			a(6) = 1^10*6^1 + 2^10*3^1 + 3^10*2^1 + 6^10*1^1 = 60587352.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), this sequence (phi_{10, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008411 (E_4^3), A280869 (E_6^2), A282102 (E_2*E_4*E_6).

Programs

  • Mathematica
    Table[If[n>0, n * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    for(n=0, 20, print1(if(n==0, 0, n * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017

Formula

G.f.: phi_{10, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (3*A008411(n) + 2*A280869(n) - 5*A282102(n))/1584.
If p is a prime, a(p) = p^10 + p = A196292(p).
a(n) = n*A013957(n) for n > 0, where A013957(n) is sigma_9(n), the sum of the 9th powers of the divisors of n. - Seiichi Manyama, Feb 18 2017
Multiplicative with a(p^e) = p^e*(p^(9*(e+1))-1)/(p^9-1). - Jianing Song, Aug 12 2020
From Amiram Eldar, Oct 30 2023: (Start)
Dirichlet g.f.: zeta(s-1)*zeta(s-10).
Sum_{k=1..n} a(k) ~ zeta(10) * n^11 / 11. (End)

A282000 Coefficients in q-expansion of E_4^3*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 216, -200232, -85500576, -11218984488, -499862636784, -11084671590048, -152346382155072, -1474691273530920, -10921720940625672, -65489246355989232, -331011680696545248, -1452954445366288032, -5665058572086302256, -19968589327695656256
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 208.

Crossrefs

Cf. A004009 (E_4), A013973 (E_6), A013974 (E_4*E_6 = E_10), A058550 (E_4^2*E_6 = E_14), this sequence (E_4^3*E_6), A282047 (E_4^4*E_6), A282048 (E_4^5*E_6).

Programs

  • Mathematica
    terms = 15;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^3*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

-28728 * A013965(n) = 43867 * a(n) - 9504000 * A037944(n) for n > 0.
Previous Showing 11-20 of 196 results. Next