cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A103820 Whitney transform of 3^n.

Original entry on oeis.org

1, 4, 16, 61, 232, 880, 3337, 12652, 47968, 181861, 689488, 2614048, 9910609, 37573972, 142453744, 540083149, 2047610680, 7763081488, 29432076505, 111585473980, 423052651456, 1603914376309, 6080901083296, 23054446378816
Offset: 0

Views

Author

Paul Barry, Feb 16 2005

Keywords

Comments

Partial sums of A030195. The Whitney transform maps the sequence with g.f. g(x) to that with g.f. (1/(1-x))g(x(1+x)).

Crossrefs

Equals (A108306(n+1) - 1)/5.

Programs

  • Magma
    I:=[1,4,16]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 18 2017
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-1]+3*a[n-2]+1 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
  • Mathematica
    Join[{a=0,b=1},Table[c=3*b+3*a+1;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
    LinearRecurrence[{4, 0, -3}, {1, 4, 16}, 40] (* Vincenzo Librandi, Aug 18 2017 *)

Formula

G.f.: 1/((1-x)(1-3x-3x^2));
a(n) = 4a(n-1) - 3a(n-3);
a(n) = Sum_{k=0..n} (Sum_{i=0..n} C(k, i-k))*3^k.
a(n) = 3(a(n-1) + a(n-2)) + 1, n > 1. [Gary Detlefs, Jun 21 2010]

A131247 2*A052509 - A000012.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 3, 1, 1, 7, 7, 3, 1, 1, 9, 13, 7, 3, 1, 1, 11, 21, 15, 7, 3, 1, 1, 13, 31, 29, 15, 7, 3, 1, 1, 15, 43, 51, 31, 15, 7, 3, 1, 1, 17, 57, 83, 61, 31, 15, 7, 3, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Comments

Row sums = A104161 starting (1, 2, 5, 10, 19, 34, 59, ...). Reversal, A131248 is generated from 2*A004070 - A000012.

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  3,  1;
  1,  5,  3,  1;
  1,  7,  7,  3,  1;
  1,  9, 13,  7,  3,  1;
  1, 11, 21, 15,  7,  3,  1;
  ...
		

Crossrefs

Formula

2*A052509 - A000012, where A000012 = (1; 1,1; 1,1,1; ...).

A172021 Start with the triangle A171661, reverse its rows, add missing powers of 2 at beginning of each row.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 4, 6, 6, 1, 2, 4, 8, 14, 20, 20, 1, 2, 4, 8, 16, 30, 50, 70, 70, 1, 2, 4, 8, 16, 32, 62, 112, 182, 252, 252, 1, 2, 4, 8, 16, 32, 64, 126, 238, 420, 672, 924, 924, 1, 2, 4, 8, 16, 32, 64, 128, 254, 492, 912, 1584, 2508, 3432, 3432
Offset: 1

Views

Author

Mark Dols, Jan 22 2010

Keywords

Comments

Rows sum up to A030662.
Triangle is a (mirrored) interspaced binomial transform of 1^n (see example). - Mark Dols, Jan 24 2010
T(n,k) is the number of k permutations of n (indistinguishable) objects of type I and n (indistinguishable) objects of type II. - Geoffrey Critzer, Mar 15 2010
Equivalently T(n,k) is the number of words length k from an alphabet of 2 letters with at most n occurrences of each letter. - Giovanni Artico, Aug 24 2013
T(n,k) is also the number of ways k persons can be accommodated into 2 rooms with at most n persons per room. - Giovanni Artico, Aug 24 2013

Examples

			Triangle begins:
......1
....1,2,2
..1,2,4,6,6
1,2,4,8,14,20,20
From _Mark Dols_, Jan 24 2010: (Start)
Interspaced binomial transform of 1^n:
1...1...1...1...1...1...
..2...2...2...2...2...2.
2...4...4...4...4...4...
..6...8...8...8...8...8.
6.. 14..16..16..16..16..
..20..30..32..32..32..32
20..50..62..64..64..64..
(End)
		

Crossrefs

Programs

  • Derive
    T(n,k):=POLY_COEFF(SUM(x^i/i!, i, 0, n)^2, x, k)·k!
    TABLE(VECTOR(T(v, u), u, 0, 2·v), v, 0, 10)  # Giovanni Artico, Aug 30 2013
  • Maple
    seq(PolynomialTools:-CoefficientList((convert(taylor(exp(x),x,n+1),polynom)^2),x)*~[seq(i!,i=0..2 n)],n=0..10) # Giovanni Artico, Aug 30 2013
  • Mathematica
    Table[CoefficientList[Series[(Sum[x^i/i!, {i, 0, m}])^2, {x, 0, 2 m}], x]*Table[n!, {n, 0, 2 m}], {m, 0, 10}] // Grid (* Geoffrey Critzer, Mar 15 2010 *)

Formula

E.g.f. for row n is: ( 1 + x + x^2/2! + ... + x^n/n! )^2. - Geoffrey Critzer, Mar 15 2010

Extensions

Definition rewritten by N. J. A. Sloane, Jan 23 2010
More terms from Mark Dols, Jan 24 2010

A192018 Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the binary Fibonacci tree of order n (1<=k<=2n-3; entries in row n are the coefficients of the corresponding Wiener polynomial).

Original entry on oeis.org

1, 3, 2, 1, 6, 6, 5, 3, 1, 11, 13, 14, 12, 10, 5, 1, 19, 24, 30, 31, 31, 28, 19, 7, 1, 32, 42, 56, 66, 74, 78, 77, 61, 32, 9, 1, 53, 71, 98, 124, 152, 175, 196, 203, 180, 118, 49, 11, 1, 87, 118, 166, 218, 284, 349, 419, 485, 525, 502, 384, 207, 70, 13, 1, 142, 194, 276, 370, 499, 645, 812, 998, 1189, 1331, 1349, 1152, 749, 336, 95, 15, 1
Offset: 2

Views

Author

Emeric Deutsch, Jun 21 2011

Keywords

Comments

The binary Fibonacci trees f(k) of order k is a rooted binary tree defined as follows: 1. f(0) has no nodes and f(1) consists of a single node. 2. For k>=2, f(k) is constructed from a root with f(k-1) as its left subtree and f(k-2) as its right subtree. See the Iyer & Reddy references.
Row n contains 2n-3 entries.
T(n,1) = A001911(n-1) (Fibonacci numbers minus 2).
Sum_{k>=1} k*T(n,k) = A192019(n) (the Wiener indices).

Examples

			Triangle starts:
   1;
   3,  2,  1;
   6,  6,  5,  3,  1;
  11, 13, 14, 12, 10,  5,  1;
  19, 24, 30, 31, 31, 28, 19,  7,  1;
		

References

  • K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.

Crossrefs

Programs

  • Maple
    G := z/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 13)): for n to 10 do r[n] := sort(coeff(Gser, z, n)) end do; w[1] := 0: w[2] := t: for n from 3 to 10 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: for n from 2 to 10 do seq(coeff(w[n], t, k), k = 1 .. 2*n-3) end do; # yields sequence in triangular form

Formula

The Wiener polynomial w(n,t) of the binary Fibonacci tree of order n satisfies the recurrence relation w(n,t) = w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2) + t^2*r(n-1,t)*r(n-2,t), w(1,t)=0, w(2,t)=t, where r(n,t) is the generating polynomial of the nodes of the binary Fibonacci tree f(n) with respect to the level of the nodes (for example, r(2,t) = 1 + t for the tree / ; see A004070 and the Maple program).

A192019 The Wiener index of the binary Fibonacci tree of order n.

Original entry on oeis.org

1, 10, 50, 214, 802, 2802, 9275, 29580, 91668, 277924, 828092, 2433140, 7067885, 20337318, 58054534, 164602410, 463990190, 1301338150, 3633753815, 10107239160, 28016346216, 77419909800, 213349801560, 586471432104, 1608485221177, 4402406713762
Offset: 2

Views

Author

Emeric Deutsch, Jun 21 2011

Keywords

Comments

The binary Fibonacci trees f(k) of order k are rooted binary trees defined as follows: 1. f(0) has no nodes and f(1) consists of a single node. 2. For k>=2, f(k) is constructed from a root with f(k-1) as its left subtree and f(k-2) as its right subtree. See the Iyer & Reddy references.

Examples

			a(3)=10 because the binary Fibonacci tree of order 3 is basically the path graph A - B - R - C and we have 3 distances equal to 1 (AB, BR, RC), 2 distances equal to 2 (AR and BC) and 1 distance equal to 3 (AC); 3*1 + 2*2 + 1*3 = 10.
		

References

  • K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.

Crossrefs

Cf. A192018.

Programs

  • Maple
    G := z/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 30)): for n to 27 do r[n] := sort(coeff(Gser, z, n)) end do: w[1] := 0: w[2] := t: for n from 3 to 27 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: seq(subs(t = 1, diff(w[n], t)), n = 2 .. 27);

Formula

a(n) = Sum_{k>=1} k*A192018(n,k).
The Wiener index of a connected graph is the derivative of the Wiener polynomial W(t) of the graph, evaluated at t=1. The Wiener polynomial w(n,t) of the binary Fibonacci tree of order n satisfies the recurrence relation w(n,t) = w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2) + t^2*r(n-1,t)*r(n-2,t), w(1,t)=0, w(2,t)=t, where r(n,t) is the generating polynomial of the nodes of the binary Fibonacci tree f(n) with respect to the level of the nodes (for example, r(2,t) = 1 + t for the tree / ; see A004070 and the Maple program).
Empirical G.f.: x^2*(x^4-3*x^2+4*x+1)/((x+1)^2*(x^2-3*x+1)^2*(x^2+x-1)^2). [Colin Barker, Nov 17 2012]

A378145 Riordan triangle (1 + x * C(x), x * C(x)), where C(x) is g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 5, 10, 8, 4, 1, 14, 28, 23, 13, 5, 1, 42, 84, 70, 42, 19, 6, 1, 132, 264, 222, 138, 68, 26, 7, 1, 429, 858, 726, 462, 240, 102, 34, 8, 1, 1430, 2860, 2431, 1573, 847, 385, 145, 43, 9, 1, 4862, 9724, 8294, 5434, 3003, 1430, 583, 198, 53, 10, 1
Offset: 0

Views

Author

Werner Schulte, Nov 17 2024

Keywords

Examples

			Triangle T(n, k) for 0 <= k <= n starts:
n\k :     0     1     2     3    4    5    6   7  8  9
======================================================
  0 :     1
  1 :     1     1
  2 :     1     2     1
  3 :     2     4     3     1
  4 :     5    10     8     4    1
  5 :    14    28    23    13    5    1
  6 :    42    84    70    42   19    6    1
  7 :   132   264   222   138   68   26    7   1
  8 :   429   858   726   462  240  102   34   8  1
  9 :  1430  2860  2431  1573  847  385  145  43  9  1
  etc.
		

Crossrefs

Cf. A000108, A004070, A120588 (column 0), A068875 (column 1 and row sums), A000007 (alt. row sums).

Programs

  • PARI
    T(n,k)=if(k==n,1,binomial(2*n-k,n)*(n*(3*k+1)-2*k*(k+1))/((2*n-k)*(2*n-k-1)))

Formula

T(n, k) = binomial(2*n-k, n) * (n*(3*k+1) - 2*k*(k+1)) / ((2*n-k) * (2*n-k-1)) if 0 <= k < n and 1 if k = n.
T(n, k) = T(n, k-1) - T(n-1, k-2) for 2 <= k <= n.
(-1)^(n-k) * T(n, k) is matrix inverse of A004070 (seen as a triangle).
Conjecture: Sum_{i=0..n-k} binomial(i+m-1, i) * T(n, i+k) = T(n+m, m+k) for m > 0.
Conjecture: Sum_{k=0..n} (1 + floor(k/2)) * T(n, k) = A000108(n+1).
G.f.: A(x, y) = (1 + x*C(x)) / (1 - y * x*C(x)), where C(x) is g.f. of A000108.
Previous Showing 21-26 of 26 results.